题目描述
瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了!
现在他想知道他们都能活下来有多少种方法。
输入输出格式
输入格式:
第一行,三个空格隔开的整数n,m,k
接下来n行,m列,表示矩阵每一个的魔液量。同一行的数字用空格隔开。
输出格式:
一个整数,表示方法数。由于可能很大,输出对1 000 000 007取余后的结果。
输入输出样例
输入样例
2 2 3
1 1
1 1
输出样例
4
【样例解释】
样例解释:四种方案是:(1,1)->(1,2),(1,1)->(2,1),(1,2)->(2,2),(2,1)->(2,2)。
【数据范围】
对于20%的数据,n,m<=10,k<=2
对于50%的数据,n,m<=100,k<=5
对于100%的数据,n,m<=800,1<=k<=15
分析
最初思路:设fi,j,k表示在i,j的格子中,小A-uim的魔液差值为k时的方案
但是,这个DP有问题,因为你不能确定这个格子究竟是小A拿还是uim拿
所以我看了题解认真思考后,决定加入第四维:l,l只有两个值:0,1,0代表小A选该格,1代表uim选该格
所以,我们可以发现,若是小A选,那么状态是从小的差值变成大的差值,所以是(q+ai,j),那么uim则反之
不要忘记取模哦
#include <iostream>
#include <cstdio>
#define rep(i,a,b) for (i=a;i<=b;i++)
using namespace std;
int n,m,k;
int a[801][801];
int f[801][801][16][2];
int i,j,q;
int ans;
int main()
{
scanf("%d%d%d",&n,&m,&k);
k++;
rep(i,1,n)
rep(j,1,m)
{
scanf("%d",&a[i][j]);
f[i][j][a[i][j]][0]=1;
}
rep(i,1,n)
rep(j,1,m)
rep(q,0,k-1)
{
f[i][j][q][0]+=(f[i][j-1][(q-a[i][j]+k)%k][1]+f[i-1][j][(q-a[i][j]+k)%k][1])%1000000007;
f[i][j][q][1]+=(f[i][j-1][(q+a[i][j])%k][0]+f[i-1][j][(q+a[i][j])%k][0])%1000000007;
}
rep(i,1,n)
rep(j,1,m)
ans=(ans+f[i][j][0][1])%1000000007;
printf("%d",ans);
}