[图论]观光旅游

题目描述
在桑给巴尔岛的Adelton城镇上有一个旅游机构。它们决定在提供许多的其它吸引之外,再向客人们提供旅游本镇的服务。 为了从提供的吸引服务中尽可能地获利,这个旅游机构接收了一个精明决定:在相同的起点与终点之间找出一最短路线。

 你的任务是编写一条程序来找类似的的一条路线。在这个镇上,有N个十字路口(编号1至N),两个十字路口之间可以有多条道路连接,有M条道路(编号为1至M)。但没有一条道路从一个十字路口出发又回到同一个路口。每一条观光路线都是由一些路组成的,这些道路序号是:y1, …, yk,且k>2。第yi(1<=i<=k-1)号路是连接第xi号十字路口和第x[i+1]号十字路口的;其中第yk号路是连接第xk号十字路口和第x[k+1]号十字路口。而且所有的这些x1,…,xk分别代表不同路口的序号。在某一条观光路线上所有道路的长度的和就是这条观光路线的总长度。换言之L(y1)+L(y2)+…+L(yk)的和, L(yi)就是第yi号观光路线的长度。你的程序必须找出类似的一条路线:长度必须最小,或者说明在这个城镇上不存在这条观光路线。

每组数据的第一行包含两个正整数:十字路口的个数N(N<=100),另一个是道路的 数目M(M<10000)。接下来的每一行描述一条路:每一行有三个正整数:这条路连接的两个路口的编号,以及这条路的长度(小于500的正整数)。

  每一行输出都是一个答案。如果这条观光路线是不存在的话就显示“No solution”;或者输出这条最短路线的长度。
  
数据

样例1
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

样例2
4 3
1 2 10
1 3 20
1 4 30
-1

样例1
61

样例2
No solution

分析
首先我们根据题目分析了解,这题是让我们求一个最小环
然后注意,这题要建双向边。。。。。。
em
最小环问题如何解?
有三种选择:
1、并查集
我暂时不会
2、m次dij
很简单,因为如果去掉一条边,这条边周围两个点的最短路加上这条边的权值,显然就是最小环的值
【已做,但程序未存档】
3、佛洛依德算法(邻接矩阵)
这个一般比较常用,因为dij的时间复杂度为n^2,然后m通常大于n,所以mn^2的时间复杂度很可能不如n^3
因为佛洛依德的枚举顺序,我们可以肯定,最短路必定是1~k-1的所有最短路
然后我们把k移到外面,然后以k作为中间点,枚举i,j,都为与k相连的点,那么因为k还没进入最短路图中,所以i,j间的最短路即为最小环减去mapi,k,mapk,j的权值的数,所以再加上这两条边,然后记录所得的最小值,就是最小环了

#include <iostream>
#include <cstdio>
#define max 111111117
#define rep(i,a,b) for (i=a;i<=b;i++)
using namespace std;
int n,m,ans=max;
int a[101][101],f[101][101];
int b[101],d[101];
void init()
{
    int i,j;
    int u,v,w;
    scanf("%d%d",&n,&m);
    rep(i,1,100)
    rep(j,1,100)
    {
        a[i][j]=max;
        f[i][j]=max;
    }
    rep(i,1,m)
    {
        scanf("%d%d",&u,&v);
        scanf("%d",&w);
        a[u][v]=w;
        f[u][v]=a[u][v];
        a[v][u]=w;
        f[v][u]=a[v][u];
    }
}
void doit()
{
    int i,j,k;
    rep(k,1,n)
    {
        rep(i,1,n)
        rep(j,i+1,n)
        ans=min(ans,f[i][j]+a[j][k]+a[k][i]);
        rep(i,1,n)
        rep(j,1,n)
        f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
    }
}
int main()
{
    init();
    doit();
    if (ans!=max) printf("%d",ans);
    else printf("No solution");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值