[DP]WTF交换

题目描述

假定给出一个包含N个整数的数组A,包含N+1个整数的数组ID,与整数R。其中ID数组中的整数均在区间[1,N-1]中。
用下面的算法对A进行Warshall-Turing-Fourier变换(WTF):

sum = 0
for i = 1 to N
    index = min{ ID[i], ID[i+1] }
    sum = sum + A[index]
    将数组A往右循环移动R位
    将数组A内所有的数取相反数
for i = 1 to N
    index = max{ ID[i], ID[i+1] }
    index = index + 1
    sum = sum + A[index]
    将数组A往右循环移动R位

给出数组A以及整数R,但没有给出数组ID。在对数组A进行了WTF算法后,变量sum的可能出现的最大值数多少?

Input
第一行包含两个整数N与R。
第二行包含N个整数,代表A[1]到A[N]的值。

Output
第一行输出变量sum可能出现的最大值。
第二行输出此时的ID数组,包含N+1个整数。必须满足ID数组中每一个数均在区间[1,N-1]中。若有多个满足的ID数组,输出任意一组。
如果第一行是正确的(不管有没有输出第二行),你能得到该测试点50%的得分。

Sample Input
输入1:
5 3
1 -1 1 -1 1
输入2:
6 5
2 5 4 1 3 5

Sample Output
输出1:
10
1 1 1 2 2 3
输出2:
16
3 2 1 1 5 4 1

Data Constraint
对于20%的数据,N<=7。
对于60%的数据,N<=300。
对于100%的数据,2<=N<=3000, 1<=R

分析

对于index的值不难想到为 ((jir)modn+n)modn ( ( j − i ∗ r ) mod n + n ) mod n [j为ID的取值]
然后f[i,j]表示ID数组第i位放j

f[i,j]=f[i1][k]+a[min(j,k)]a[max(j,k)+1] f [ i , j ] = f [ i − 1 ] [ k ] + a [ m i n ( j , k ) ] − a [ m a x ( j , k ) + 1 ]

但是index的取值有点麻烦,我们将其拆成两种情况:
ID[i]ID[i+1] I D [ i ] ≤ I D [ i + 1 ]
f[i,j]=f[i1][k]+a[k]a[j+1] f [ i , j ] = f [ i − 1 ] [ k ] + a [ k ] − a [ j + 1 ]

【我们注意到 f[i1][k]+a[k] f [ i − 1 ] [ k ] + a [ k ] j j 值无关,下面类似】
所以我们的k值只用找最优值(使f[i1][k]+a[k]最大)即可,下面类似
ID[i]>ID[i+1] I D [ i ] > I D [ i + 1 ]
f[i,j]=f[i1][k]+a[j]a[k+1] f [ i , j ] = f [ i − 1 ] [ k ] + a [ j ] − a [ k + 1 ]

然后我们要输出ID值,我们只用记录一个前缀数组pre,最后回溯求一求值即可
(j值取0~n-2较好,模时不用搞一些奇奇怪怪的东西)

#include <iostream>
#include <cstdio>
#include <memory.h>
#define rep(i,a,b) for (i=a;i<=b;i++)
const int N=3001;
using namespace std;
int n,r;
int a[N],f[N][N],pre[N][N];

void Printid(int i,int j) {
    if (i) Printid(i-1,pre[i][j]);
    printf("%d ",j+1);
}

void Solve() {
    int i,j,mx,g,ans=-2147483647;
    memset(f,-0x3f,sizeof f);
    memset(f[0],0,sizeof f[0]);
    rep(i,1,n) {
        mx=-2147483647;g=0;
        rep(j,0,n-2) {
            if (f[i-1][j]+a[((j-(i-1)*r)%n+n)%n]>mx) {
                mx=f[i-1][j]+a[((j-(i-1)*r)%n+n)%n];
                g=j;
            }
            if (mx-a[((j+1-(i-1)*r)%n+n)%n]>f[i][j]) {
                f[i][j]=mx-a[((j+1-(i-1)*r)%n+n)%n];
                pre[i][j]=g;
            }
        }
        mx=-2147483647;
        for (j=n-2;j>=0;j--) {
            if (f[i-1][j]-a[((j+1-(i-1)*r)%n+n)%n]>mx) {
                mx=f[i-1][j]-a[((j+1-(i-1)*r)%n+n)%n];
                g=j;
            }
            if (mx+a[((j-(i-1)*r)%n+n)%n]>f[i][j]) {
                f[i][j]=mx+a[((j-(i-1)*r)%n+n)%n];
                pre[i][j]=g;
            }
        }
    }
    rep(i,0,n-2)
    if (f[n][i]>ans) {
        ans=f[n][i];
        g=i;
    }
    printf("%d\n",ans);
    Printid(n,g);
}

int main() {
    int i;
    scanf("%d%d",&n,&r);
    rep(i,0,n-1)
    scanf("%d",&a[i]);
    Solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值