题目描述
假定给出一个包含N个整数的数组A,包含N+1个整数的数组ID,与整数R。其中ID数组中的整数均在区间[1,N-1]中。
用下面的算法对A进行Warshall-Turing-Fourier变换(WTF):
sum = 0
for i = 1 to N
index = min{ ID[i], ID[i+1] }
sum = sum + A[index]
将数组A往右循环移动R位
将数组A内所有的数取相反数
for i = 1 to N
index = max{ ID[i], ID[i+1] }
index = index + 1
sum = sum + A[index]
将数组A往右循环移动R位
给出数组A以及整数R,但没有给出数组ID。在对数组A进行了WTF算法后,变量sum的可能出现的最大值数多少?
Input
第一行包含两个整数N与R。
第二行包含N个整数,代表A[1]到A[N]的值。
Output
第一行输出变量sum可能出现的最大值。
第二行输出此时的ID数组,包含N+1个整数。必须满足ID数组中每一个数均在区间[1,N-1]中。若有多个满足的ID数组,输出任意一组。
如果第一行是正确的(不管有没有输出第二行),你能得到该测试点50%的得分。
Sample Input
输入1:
5 3
1 -1 1 -1 1
输入2:
6 5
2 5 4 1 3 5
Sample Output
输出1:
10
1 1 1 2 2 3
输出2:
16
3 2 1 1 5 4 1
Data Constraint
对于20%的数据,N<=7。
对于60%的数据,N<=300。
对于100%的数据,2<=N<=3000, 1<=R
分析
对于index的值不难想到为
((j−i∗r)modn+n)modn
(
(
j
−
i
∗
r
)
mod
n
+
n
)
mod
n
[j为ID的取值]
然后f[i,j]表示ID数组第i位放j
但是index的取值有点麻烦,我们将其拆成两种情况:
当 ID[i]≤ID[i+1] I D [ i ] ≤ I D [ i + 1 ] 时
【我们注意到 f[i−1][k]+a[k] f [ i − 1 ] [ k ] + a [ k ] 与 j j 值无关,下面类似】
所以我们的k值只用找最优值(使最大)即可,下面类似
当 ID[i]>ID[i+1] I D [ i ] > I D [ i + 1 ] 时
然后我们要输出ID值,我们只用记录一个前缀数组pre,最后回溯求一求值即可
(j值取0~n-2较好,模时不用搞一些奇奇怪怪的东西)
#include <iostream>
#include <cstdio>
#include <memory.h>
#define rep(i,a,b) for (i=a;i<=b;i++)
const int N=3001;
using namespace std;
int n,r;
int a[N],f[N][N],pre[N][N];
void Printid(int i,int j) {
if (i) Printid(i-1,pre[i][j]);
printf("%d ",j+1);
}
void Solve() {
int i,j,mx,g,ans=-2147483647;
memset(f,-0x3f,sizeof f);
memset(f[0],0,sizeof f[0]);
rep(i,1,n) {
mx=-2147483647;g=0;
rep(j,0,n-2) {
if (f[i-1][j]+a[((j-(i-1)*r)%n+n)%n]>mx) {
mx=f[i-1][j]+a[((j-(i-1)*r)%n+n)%n];
g=j;
}
if (mx-a[((j+1-(i-1)*r)%n+n)%n]>f[i][j]) {
f[i][j]=mx-a[((j+1-(i-1)*r)%n+n)%n];
pre[i][j]=g;
}
}
mx=-2147483647;
for (j=n-2;j>=0;j--) {
if (f[i-1][j]-a[((j+1-(i-1)*r)%n+n)%n]>mx) {
mx=f[i-1][j]-a[((j+1-(i-1)*r)%n+n)%n];
g=j;
}
if (mx+a[((j-(i-1)*r)%n+n)%n]>f[i][j]) {
f[i][j]=mx+a[((j-(i-1)*r)%n+n)%n];
pre[i][j]=g;
}
}
}
rep(i,0,n-2)
if (f[n][i]>ans) {
ans=f[n][i];
g=i;
}
printf("%d\n",ans);
Printid(n,g);
}
int main() {
int i;
scanf("%d%d",&n,&r);
rep(i,0,n-1)
scanf("%d",&a[i]);
Solve();
}