jzoj1337. 买水喝

12 篇文章 0 订阅
1 篇文章 0 订阅

题目

Description

小PP超喜欢喝水,所以他就去买水了。
  商店里有 5 种水
  第 1 种:商店里有无数瓶
  第 2 种:商店里只有一瓶
  第 3 种:商店里竟然有 4 瓶 。
  第 4 种: 5 瓶5 瓶一包卖的
  第 5 种: 2 瓶 2 瓶一包卖的
  好奇心极强的小PP想买 n 瓶水,他想知道他有多少种买法。

Input

输入文件的第一行包括一个正整数N

Output

输出文件有且仅有一个整数 , 为买水方案数 .

Sample Input

1

Sample Output

3

Hint

【数据规模】
  对于 10% 的数据: n<=10;
  有 20% 的数据: n<=100000;
  对于 100% 的数据: n<= maxlongint;

分析

题目大意:

求用5种类型的水能有多少种方案凑出N瓶水

解法1

思路:

一开始我本来打算用DP之类的手段做的,但后来发现N在2147483647之内,所以我就觉得这是一道找规律题。一开始我用dfs找规律时打错了,浪费了很多时间。后来我发现用循环也是可以找出规律的,只需枚举每种水买多少瓶(包),在判断是否能凑成N瓶水即可,此处附上找规律代码。
在这里插入图片描述
然后我们就得到了以下规律

输入输出
13
26
310
415
521
628

我们可以发现
31+2
6
1+2+3
10=1+2+3+4
15=1+2+3+4+5
21=1+2+3+4+5+6
所以用等差数列求和公式即可,即答案为(n+1)(n+2)/2

解法2

思路:

经过对比,我们发现第二种水和第五种水是可以归为一类的,第三种水和第四种水也可以归为一类(第二种与第三种分别是第五种与第四种的余数),由此可设
x_1表示第一种水买多少瓶
x_2=2x+a (x表示买x包第五种水,a表示买a瓶第二种水)
x_3=5y+b (y表示买y包第四种水,b表示买b瓶第三种水)
但我们又想让以上三个数均>0,所以可得x_1+1+x_2+1+x_3+1=N+3
那么问题就转化为了在N+3个小球中插2块板子(插板问题),也就是在N+2个空隙中插2块板子,所以可得公式(n+1)(n+2)/2

CODE

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

long long n,m;

int main(){
	scanf("%lld",&n);
	m=(n+1)*(n+2)/2;
	printf("%lld\n",m);
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值