题目
Description
小PP超喜欢喝水,所以他就去买水了。
商店里有 5 种水
第 1 种:商店里有无数瓶
第 2 种:商店里只有一瓶
第 3 种:商店里竟然有 4 瓶 。
第 4 种: 5 瓶5 瓶一包卖的
第 5 种: 2 瓶 2 瓶一包卖的
好奇心极强的小PP想买 n 瓶水,他想知道他有多少种买法。
Input
输入文件的第一行包括一个正整数N
Output
输出文件有且仅有一个整数 , 为买水方案数 .
Sample Input
1
Sample Output
3
Hint
【数据规模】
对于 10% 的数据: n<=10;
有 20% 的数据: n<=100000;
对于 100% 的数据: n<= maxlongint;
分析
题目大意:
求用5种类型的水能有多少种方案凑出N瓶水
解法1
思路:
一开始我本来打算用DP之类的手段做的,但后来发现N在2147483647之内,所以我就觉得这是一道找规律题。一开始我用dfs找规律时打错了,浪费了很多时间。后来我发现用循环也是可以找出规律的,只需枚举每种水买多少瓶(包),在判断是否能凑成N瓶水即可,此处附上找规律代码。
然后我们就得到了以下规律
输入 | 输出 |
---|---|
1 | 3 |
2 | 6 |
3 | 10 |
4 | 15 |
5 | 21 |
6 | 28 |
我们可以发现
31+2
61+2+3
10=1+2+3+4
15=1+2+3+4+5
21=1+2+3+4+5+6
所以用等差数列求和公式即可,即答案为(n+1)(n+2)/2
解法2
思路:
经过对比,我们发现第二种水和第五种水是可以归为一类的,第三种水和第四种水也可以归为一类(第二种与第三种分别是第五种与第四种的余数),由此可设
x_1表示第一种水买多少瓶
x_2=2x+a (x表示买x包第五种水,a表示买a瓶第二种水)
x_3=5y+b (y表示买y包第四种水,b表示买b瓶第三种水)
但我们又想让以上三个数均>0,所以可得x_1+1+x_2+1+x_3+1=N+3
那么问题就转化为了在N+3个小球中插2块板子(插板问题),也就是在N+2个空隙中插2块板子,所以可得公式(n+1)(n+2)/2
CODE
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long n,m;
int main(){
scanf("%lld",&n);
m=(n+1)*(n+2)/2;
printf("%lld\n",m);
return 0;
}