题目大意:
题目链接:https://codeforces.com/problemset/problem/109/C
给出一棵树,定义树上一条边的边权若只由4和7两个数字构成,则这一条边为幸运边。求这棵树上有多少三元组
(
x
,
y
,
z
)
(x,y,z)
(x,y,z)满足
x
x
x到
y
y
y的路径上和
y
y
y到
z
z
z的路径上都至少有一条幸运边。
思路:
最多绿题难度。结果洛谷给评了一个紫题。
考虑对于每一个点
x
x
x,如果我们求出有
s
u
m
sum
sum个点与
x
x
x之间的路径至少需要经过一条幸运边,那么答案其实就是
s
u
m
(
s
u
m
−
1
)
sum(sum-1)
sum(sum−1),因为这
s
u
m
sum
sum个点中,任意两个点都可以与
x
x
x组成一个三元组。
所以我们记录这棵树的每一条边是否为幸运边,然后
d
f
s
dfs
dfs,求出每一个不包含幸运边的连通块的大小。并查集维护每一个点出现在哪一个连通块内。
最后枚举每一个点,不与这个点在同一个连通块内的点就必然在到
x
x
x的路径中有至少一条幸运边。那么就可以直接求答案了。
时间复杂度
O
(
n
)
O(n)
O(n)。没算并查集的复杂度。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=100010;
int n,tot,size[N],father[N],head[N];
bool vis[N];
ll ans;
struct edge
{
int next,to;
bool flag;
}e[N*2];
void add(int from,int to,bool flag)
{
e[++tot].to=to;
e[tot].flag=flag;
e[tot].next=head[from];
head[from]=tot;
}
bool check(int x)
{
for (;x;x/=10)
if (x%10!=4 && x%10!=7) return 0;
return 1;
}
int find(int x)
{
return x==father[x]?x:father[x]=find(father[x]);
}
void dfs(int x,int fa)
{
vis[x]=1;
father[x]=find(fa);
size[father[x]]++;
for (int i=head[x];~i;i=e[i].next)
{
int v=e[i].to;
if (v!=fa && !e[i].flag) dfs(v,x);
}
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d",&n);
for (int i=1,x,y,z;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,check(z)); add(y,x,check(z));
}
for (int i=1;i<=n;i++)
father[i]=i;
for (int i=1;i<=n;i++)
if (!vis[i]) dfs(i,i);
for (int i=1;i<=n;i++)
ans+=(ll)(n-size[father[i]])*(n-size[father[i]]-1);
printf("%I64d",ans);
return 0;
}