【洛谷P2371】墨墨的等式【最短路】

题目大意:

题目链接:https://www.luogu.org/problem/P2371
墨墨突然对等式很感兴趣,他正在研究 a 1 x 1 + a 2 x 2 + . . . + a n x n = B a_1x_1+a_2x_2+...+a_nx_n=B a1x1+a2x2+...+anxn=B 存在非负整数解的条件,他要求你编写一个程序,给定 n n n a n {an} an、以及 B B B的取值范围,求出有多少 B B B可以使等式存在非负整数解。


思路:

在这里插入图片描述
以下内容大部分摘自这篇题解
B ≤ 1 0 6 B\leq 10^6 B106的部分分就是一个裸的背包。但是这道题的范围是 B ≤ 1 0 12 B\leq 10^{12} B1012
若满足 a 1 x 1 + a 2 x 2 + . . . + a n x n = p a_1x_1+a_2x_2+...+a_nx_n=p a1x1+a2x2+...+anxn=p,那么一定满足 a 1 x 1 + a 2 x 2 + . . . + a n x n = p + k × m i n n a_1x_1+a_2x_2+...+a_nx_n=p+k\times minn a1x1+a2x2+...+anxn=p+k×minn。显然在 p p p越小时, k k k能取到的值越大。
m i n n = m i n { a i } minn=min\{a_i\} minn=min{ai} d i s [ i ] dis[i] dis[i]表示 B m o d    m i n n = i B\mod minn=i Bmodminn=i p p p的最小值。
对于每一个数字 a i a_i ai,建边 j → ( j + a i ) m o d    m i n n j\to (j+a_i)\mod minn j(j+ai)modminn,其中 j ∈ [ 0 , m i n n ) j\in[0,minn) j[0,minn)
然后从0开始跑最短路,这样就可以求出 d i s [ ] dis[] dis[]了。
那么 B ∈ [ 0 , k ] B\in [0,k] B[0,k]时原式有非负整数解的数量即为 ∑ i = 0 m i n n − 1 ( k − d i s [ i ] m i n n + 1 ) \sum^{minn-1}_{i=0}(\frac{k-dis[i]}{minn}+1) i=0minn1(minnkdis[i]+1)


代码:

#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mp make_pair
using namespace std;
typedef long long ll;

const int N=15,M=500010;
int n,tot,minn,a[N],head[M];
ll Bmin,Bmax,dis[M];
bool vis[M];

struct edge
{
	int next,to,dis;
}e[N*M];

void add(int from,int to,int dis)
{
	e[++tot].to=to;
	e[tot].dis=dis;
	e[tot].next=head[from];
	head[from]=tot;
}

void dij()
{
	priority_queue<pair<ll,int> > q;
	q.push(mp(0,0));
	memset(dis,0x3f3f3f3f,sizeof(dis));
	dis[0]=0;
	while (q.size())
	{
		int u=q.top().second;
		q.pop();
		if (vis[u]) continue;
		vis[u]=1;
		for(int i=head[u];~i;i=e[i].next)
		{
			int v=e[i].to;
			if (dis[v]>dis[u]+(ll)e[i].dis)
			{
				dis[v]=dis[u]+(ll)e[i].dis;
				q.push(mp(-dis[v],v));
			}
		}
	}
}

ll count(ll k)
{
	ll ans=0;
	for (ll i=0;i<minn;i++)
		if (dis[i]<=k) ans+=(k-dis[i])/(ll)minn+1;
	return ans;
}

int main()
{
	memset(head,-1,sizeof(head));
	scanf("%d%lld%lld",&n,&Bmin,&Bmax);
	minn=M;
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		minn=min(minn,a[i]);
	}
	for (int i=0;i<minn;i++)
		for (int j=1;j<=n;j++)
			add(i,(i+a[j])%minn,a[j]);
	dij();
	printf("%lld",count(Bmax)-count(Bmin-1));
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值