【牛客CSP-S提高组赛前集训营4】A - 复读数组【数论,数学】

题目大意:

题目链接:https://ac.nowcoder.com/acm/contest/1103/A

题目描述
有一个长为 n × k n\times k n×k的数组,它是由长为n的数组 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an重复 k k k次得到的。
定义这个数组的一个区间的权值为它里面不同的数的个数,现在,你需要求出对于这个数组的每个非空区间的权值之和。
答案对 1 0 9 + 7 10^9+7 109+7取模。


思路:

考虑每一个数字会对多少个区间做贡献,容易发现,答案就是每一个数字能做贡献的区间数量之和。
又因为一个数字能做贡献的区间数量 = = =总区间 − - 没有该数字贡献的区间。
p o s [ i ] [ j ] pos[i][j] pos[i][j]表示数字 i i i j j j次出现的位置。那么数字 i i i的不做贡献的区间数量就是
c o u n t ( 1 , p o s [ i ] [ 1 ] − 1 ) + c o u n t ( p o s [ i ] [ m ] + 1 , n k ) + ∑ i = 2 m c o u n t ( p o s [ i ] [ j − 1 ] + 1 , p o s [ i ] [ j ] − 1 ) count(1,pos[i][1]-1)+count(pos[i][m]+1,nk)+\sum^{m}_{i=2}count(pos[i][j-1]+1,pos[i][j]-1) count(1,pos[i][1]1)+count(pos[i][m]+1,nk)+i=2mcount(pos[i][j1]+1,pos[i][j]1)
其中 c o u n t ( x , y ) = ( r − l − 1 ) ( r − l − 2 ) 2 count(x,y)=\frac{(r-l-1)(r-l-2)}{2} count(x,y)=2(rl1)(rl2)
由于每重复的一段中的 c o u n t count count之和,是一样的,所以我们对于 ∑ i = 2 m c o u n t ( p o s [ i ] [ j − 1 ] + 1 , p o s [ i ] [ j ] − 1 ) \sum^{m}_{i=2}count(pos[i][j-1]+1,pos[i][j]-1) i=2mcount(pos[i][j1]+1,pos[i][j]1)只需要求出一次重复的情况,然后乘 k k k即可。
注意还需要算上两个重复块之间的答案。如果一个块有 p p p个数字 i i i,那么答案就是 c o u n t ( p o s [ i ] [ p ] + 1 , p o s [ i ] [ 1 ] + n − 1 ) count(pos[i][p]+1,pos[i][1]+n-1) count(pos[i][p]+1,pos[i][1]+n1)。这种区间是有 k − 1 k-1 k1个的。
时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)


代码:

#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N=100010,MOD=1e9+7;
int tot,a[N],b[N];
ll k,ans,cnt,n;
vector<int> pos[N];

ll power(ll x,ll k)
{
	ll ans=1;
	for (;k;k>>=1,x=x*x%MOD)
		if (k&1) ans=ans*x%MOD;
	return ans;
}

ll count(ll l,ll r)
{
	return (r-l+1)*(r-l+2)%MOD*power(2LL,MOD-2)%MOD;
}

int main()
{
	scanf("%lld%lld",&n,&k);
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		b[i]=a[i];
	}
	sort(b+1,b+1+n);
	tot=unique(b+1,b+1+n)-b-1;
	for (int i=1;i<=n;i++)
		pos[lower_bound(b+1,b+1+tot,a[i])-b].push_back(i);
	for (int i=1;i<=tot;i++)
	{
		int len=pos[i].size();
		cnt=(count(1,pos[i][0]-1)+count(pos[i][len-1]+1,n))%MOD;
		for (int j=1;j<len;j++)
			cnt=(cnt+count(pos[i][j-1]+1,pos[i][j]-1)*k%MOD)%MOD;
		cnt=(cnt+count(pos[i][len-1]+1,pos[i][0]+n-1)*(k-1)%MOD)%MOD;
		ans=(ans+count(1,(n*k)%MOD)-cnt)%MOD;
	}
	printf("%lld",(ans%MOD+MOD)%MOD);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值