题目大意:
题目链接:https://ac.nowcoder.com/acm/contest/1103/A
题目描述
有一个长为
n
×
k
n\times k
n×k的数组,它是由长为n的数组
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an重复
k
k
k次得到的。
定义这个数组的一个区间的权值为它里面不同的数的个数,现在,你需要求出对于这个数组的每个非空区间的权值之和。
答案对
1
0
9
+
7
10^9+7
109+7取模。
思路:
考虑每一个数字会对多少个区间做贡献,容易发现,答案就是每一个数字能做贡献的区间数量之和。
又因为一个数字能做贡献的区间数量
=
=
=总区间
−
-
−没有该数字贡献的区间。
设
p
o
s
[
i
]
[
j
]
pos[i][j]
pos[i][j]表示数字
i
i
i第
j
j
j次出现的位置。那么数字
i
i
i的不做贡献的区间数量就是
c
o
u
n
t
(
1
,
p
o
s
[
i
]
[
1
]
−
1
)
+
c
o
u
n
t
(
p
o
s
[
i
]
[
m
]
+
1
,
n
k
)
+
∑
i
=
2
m
c
o
u
n
t
(
p
o
s
[
i
]
[
j
−
1
]
+
1
,
p
o
s
[
i
]
[
j
]
−
1
)
count(1,pos[i][1]-1)+count(pos[i][m]+1,nk)+\sum^{m}_{i=2}count(pos[i][j-1]+1,pos[i][j]-1)
count(1,pos[i][1]−1)+count(pos[i][m]+1,nk)+i=2∑mcount(pos[i][j−1]+1,pos[i][j]−1)
其中
c
o
u
n
t
(
x
,
y
)
=
(
r
−
l
−
1
)
(
r
−
l
−
2
)
2
count(x,y)=\frac{(r-l-1)(r-l-2)}{2}
count(x,y)=2(r−l−1)(r−l−2)
由于每重复的一段中的
c
o
u
n
t
count
count之和,是一样的,所以我们对于
∑
i
=
2
m
c
o
u
n
t
(
p
o
s
[
i
]
[
j
−
1
]
+
1
,
p
o
s
[
i
]
[
j
]
−
1
)
\sum^{m}_{i=2}count(pos[i][j-1]+1,pos[i][j]-1)
∑i=2mcount(pos[i][j−1]+1,pos[i][j]−1)只需要求出一次重复的情况,然后乘
k
k
k即可。
注意还需要算上两个重复块之间的答案。如果一个块有
p
p
p个数字
i
i
i,那么答案就是
c
o
u
n
t
(
p
o
s
[
i
]
[
p
]
+
1
,
p
o
s
[
i
]
[
1
]
+
n
−
1
)
count(pos[i][p]+1,pos[i][1]+n-1)
count(pos[i][p]+1,pos[i][1]+n−1)。这种区间是有
k
−
1
k-1
k−1个的。
时间复杂度
O
(
n
log
n
)
O(n\log n)
O(nlogn)
代码:
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=100010,MOD=1e9+7;
int tot,a[N],b[N];
ll k,ans,cnt,n;
vector<int> pos[N];
ll power(ll x,ll k)
{
ll ans=1;
for (;k;k>>=1,x=x*x%MOD)
if (k&1) ans=ans*x%MOD;
return ans;
}
ll count(ll l,ll r)
{
return (r-l+1)*(r-l+2)%MOD*power(2LL,MOD-2)%MOD;
}
int main()
{
scanf("%lld%lld",&n,&k);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
tot=unique(b+1,b+1+n)-b-1;
for (int i=1;i<=n;i++)
pos[lower_bound(b+1,b+1+tot,a[i])-b].push_back(i);
for (int i=1;i<=tot;i++)
{
int len=pos[i].size();
cnt=(count(1,pos[i][0]-1)+count(pos[i][len-1]+1,n))%MOD;
for (int j=1;j<len;j++)
cnt=(cnt+count(pos[i][j-1]+1,pos[i][j]-1)*k%MOD)%MOD;
cnt=(cnt+count(pos[i][len-1]+1,pos[i][0]+n-1)*(k-1)%MOD)%MOD;
ans=(ans+count(1,(n*k)%MOD)-cnt)%MOD;
}
printf("%lld",(ans%MOD+MOD)%MOD);
return 0;
}