题目大意:
一个地方有n个洞穴,编号为1到n。它们之间,有的有双向的小路相连,有的却没有,不过所有洞穴都通过小路连在了一起,没有任何两个洞穴不能相互到达。现在要求所有人都到达洞穴出口处,有两个洞穴是出口,分别编号1和n,每个人都选择最短的路线,从某一个出口离开。所有的小路都是有长度的,而所有人的速度都认为是1。
现在请问,在给定的T时间内,最多有多少人可以离开。另一个问题,最慢的人离开需要多少时间。
思路:
这道题很明显是一道最短路问题,由于数据比较小,我们可以用Floyed算法。先求出每个点之间的最短距离,再看每一个人离开所需的时间,相比较后,输出即可。
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
int f[5001][5001],n,sum,m,t,y,x,k,a[1001],maxn;
void init()
{
freopen("escape.in","r",stdin);
freopen("escape.out","w",stdout); //文件输入输出
memset(f,0x7f,sizeof(f)); //初始化,两点之间的距离赋值为无限
scanf("%d%d%d",&n,&m,&t);
for (int i=1;i<=n;i++)
f[i][i]=0; //自己到自己的距离为0
for (int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
scanf("%d",&f[x][y]);
f[y][x]=f[x][y]; //无向图
}
scanf("%d",&k);
for (int i=1;i<=k;i++)
{
scanf("%d",&a[i]); //读入每个人的位置
}
}
int main()
{
init();
for (int q=1;q<=n;q++) //Floyed算法
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (f[i][j]>(long long)f[i][q]+f[q][j])
f[i][j]=f[i][q]+f[q][j]; //求i和j之间的最短路径
for (int i=1;i<=k;i++) //比较输出
{
if (min(f[1][a[i]],f[n][a[i]])<=t) sum++; //如果从更近的出口离开所需时间小于t就计数
if (maxn<min(f[1][a[i]],f[n][a[i]])) maxn=min(f[1][a[i]],f[n][a[i]]); //寻找离开最晚的人离开所需的时间
}
printf("%d\n%d",sum,maxn);
return 0;
}