SSL-ZYC 逃离洞穴

题目大意:
一个地方有n个洞穴,编号为1到n。它们之间,有的有双向的小路相连,有的却没有,不过所有洞穴都通过小路连在了一起,没有任何两个洞穴不能相互到达。现在要求所有人都到达洞穴出口处,有两个洞穴是出口,分别编号1和n,每个人都选择最短的路线,从某一个出口离开。所有的小路都是有长度的,而所有人的速度都认为是1。
现在请问,在给定的T时间内,最多有多少人可以离开。另一个问题,最慢的人离开需要多少时间。


思路:
这道题很明显是一道最短路问题,由于数据比较小,我们可以用Floyed算法。先求出每个点之间的最短距离,再看每一个人离开所需的时间,相比较后,输出即可。


代码:

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
int f[5001][5001],n,sum,m,t,y,x,k,a[1001],maxn;

void init()
{
    freopen("escape.in","r",stdin);
    freopen("escape.out","w",stdout);  //文件输入输出 
    memset(f,0x7f,sizeof(f));  //初始化,两点之间的距离赋值为无限 
    scanf("%d%d%d",&n,&m,&t);
    for (int i=1;i<=n;i++)
     f[i][i]=0;  //自己到自己的距离为0 
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d",&x,&y);
        scanf("%d",&f[x][y]);
        f[y][x]=f[x][y];  //无向图 
    }
    scanf("%d",&k);
    for (int i=1;i<=k;i++) 
    {
        scanf("%d",&a[i]);  //读入每个人的位置 
    }
}

int main()
{
    init();
    for (int q=1;q<=n;q++)  //Floyed算法
     for (int i=1;i<=n;i++)
      for (int j=1;j<=n;j++)
       if (f[i][j]>(long long)f[i][q]+f[q][j])
        f[i][j]=f[i][q]+f[q][j];  //求i和j之间的最短路径 
    for (int i=1;i<=k;i++)  //比较输出 
    {
        if (min(f[1][a[i]],f[n][a[i]])<=t) sum++;  //如果从更近的出口离开所需时间小于t就计数 
        if (maxn<min(f[1][a[i]],f[n][a[i]])) maxn=min(f[1][a[i]],f[n][a[i]]);  //寻找离开最晚的人离开所需的时间 
    } 
    printf("%d\n%d",sum,maxn);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值