题目大意:
题目链接:http://contest-hunter.org:83/contest/0x40「数据结构进阶」例题/4201 楼兰图腾
求一个平面上的点能组成多少个
⋀
\bigwedge
⋀和
⋁
\bigvee
⋁
思路:
树状数组。
对于每个点,我们可以用树状数组求出以它为原点作平面直角坐标系,有多少个点在它的四个象限内。那么我们若以这个点作为
⋁
\bigvee
⋁的最下面的点,那么能组成
⋁
\bigvee
⋁的方法共有在第二象限的点的个数
×
\times
×在第一象限的点得个数。
同理,
⋀
\bigwedge
⋀就是第三象限的点得个数
×
\times
×第四象限的点的个数。
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 200001
using namespace std;
int n,lh[N],ll[N],rh[N],rl[N],a[N],c[N];
long long ansup,ansdown;
int ask(int x) //询问
{
int sum=0;
for (;x;x-=x&(-x)) sum+=c[x];
return sum;
}
void add(int x) //修改
{
for (;x<=n;x+=x&(-x)) c[x]++;
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++) //求从左往右的每个点
{
scanf("%d",&a[i]);
lh[i]=ask(a[i]-1);
ll[i]=i-1-lh[i];
add(a[i]);
}
memset(c,0,sizeof(c));
for (int i=n;i>=1;i--) //求从右往左的每个点
{
rh[i]=ask(a[i]-1);
rl[i]=n-i-rh[i];
add(a[i]);
}
for (int i=2;i<n;i++)
{
ansup+=(long long)lh[i]*rh[i];
ansdown+=(long long)ll[i]*rl[i];
}
cout<<ansdown<<" "<<ansup<<endl;
return 0;
}