题目大意:
题目链接:https://www.luogu.org/problemnew/show/P1063
有
n
n
n个珠子围成一圈,每个珠子有能量值
a
[
i
]
a[i]
a[i],合并两串已串起来的珠子
[
i
,
j
]
[i,j]
[i,j]和
[
j
,
k
]
[j,k]
[j,k]能获得
a
[
i
]
×
a
[
j
]
×
a
[
k
]
a[i]\times a[j] \times a[k]
a[i]×a[j]×a[k]能量。求把所有珠子合并的最大能量值。
思路:
很像石子归并啊,肯定是区间DP。
那么首先得破环为链。
设
f
[
j
]
[
i
]
f[j][i]
f[j][i]为合并
[
j
,
i
]
[j,i]
[j,i]能获得的最大能量值,那么很明显可以枚举一个
k
(
j
≤
k
<
i
)
k(j\leq k<i)
k(j≤k<i),那么就有
f
[
j
]
[
i
]
=
m
a
x
(
f
[
j
]
[
i
]
,
f
[
j
]
[
k
]
+
f
[
k
+
1
]
[
i
]
+
a
[
j
]
×
a
[
k
+
1
]
×
a
[
i
+
1
]
)
f[j][i]=max(f[j][i],f[j][k]+f[k+1][i]+a[j] \times a[k+1] \times a[i+1])
f[j][i]=max(f[j][i],f[j][k]+f[k+1][i]+a[j]×a[k+1]×a[i+1])
即左边合并的最大值+右边合并的最大值+本次合并的能量
答案为
m
a
x
(
f
[
1
]
[
n
]
,
f
[
2
]
[
n
+
1
]
,
f
[
3
]
[
n
+
2
]
.
.
.
.
.
.
f
[
n
]
[
2
×
n
−
1
]
)
max(f[1][n],f[2][n+1],f[3][n+2]......f[n][2\times n-1])
max(f[1][n],f[2][n+1],f[3][n+2]......f[n][2×n−1])
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 210 //破环为链数组开大一倍
using namespace std;
int n,a[N],f[N][N],ans;
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i]; //破环为链
}
for (int i=1;i<=2*n;i++) //枚举右端点
for (int j=i-1;j>0;j--) //枚举左端点
for (int k=j;k<i;k++)
f[j][i]=max(f[j][i],a[j]*a[k+1]*a[i+1]+f[j][k]+f[k+1][i]);
for (int i=1;i<=n;i++)
ans=max(ans,f[i][i+n-1]);
printf("%d\n",ans);
return 0;
}