【洛谷P1063】能量项链【区间DP】

题目大意:

题目链接:https://www.luogu.org/problemnew/show/P1063
n n n个珠子围成一圈,每个珠子有能量值 a [ i ] a[i] a[i],合并两串已串起来的珠子 [ i , j ] [i,j] [i,j] [ j , k ] [j,k] [j,k]能获得 a [ i ] × a [ j ] × a [ k ] a[i]\times a[j] \times a[k] a[i]×a[j]×a[k]能量。求把所有珠子合并的最大能量值。


思路:

很像石子归并啊,肯定是区间DP。
那么首先得破环为链。
f [ j ] [ i ] f[j][i] f[j][i]为合并 [ j , i ] [j,i] [j,i]能获得的最大能量值,那么很明显可以枚举一个 k ( j ≤ k &lt; i ) k(j\leq k&lt;i) k(jk<i),那么就有
f [ j ] [ i ] = m a x ( f [ j ] [ i ] , f [ j ] [ k ] + f [ k + 1 ] [ i ] + a [ j ] × a [ k + 1 ] × a [ i + 1 ] ) f[j][i]=max(f[j][i],f[j][k]+f[k+1][i]+a[j] \times a[k+1] \times a[i+1]) f[j][i]=max(f[j][i],f[j][k]+f[k+1][i]+a[j]×a[k+1]×a[i+1])
即左边合并的最大值+右边合并的最大值+本次合并的能量
答案为 m a x ( f [ 1 ] [ n ] , f [ 2 ] [ n + 1 ] , f [ 3 ] [ n + 2 ] . . . . . . f [ n ] [ 2 × n − 1 ] ) max(f[1][n],f[2][n+1],f[3][n+2]......f[n][2\times n-1]) max(f[1][n],f[2][n+1],f[3][n+2]......f[n][2×n1])


代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 210  //破环为链数组开大一倍
using namespace std; 

int n,a[N],f[N][N],ans;

int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		a[i+n]=a[i];  //破环为链
	} 
	for (int i=1;i<=2*n;i++)  //枚举右端点
	 for (int j=i-1;j>0;j--)  //枚举左端点
	  for (int k=j;k<i;k++)
	   f[j][i]=max(f[j][i],a[j]*a[k+1]*a[i+1]+f[j][k]+f[k+1][i]);
	for (int i=1;i<=n;i++)
	 ans=max(ans,f[i][i+n-1]);
	printf("%d\n",ans);
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值