题目大意:
题目链接:https://jzoj.net/senior/#main/show/4229
求首项为
a
1
a_1
a1,公比为
q
q
q,项数为
n
n
n的等比数列的和。
思路:
众所周知,
n
−
1
n-1
n−1项的等比数列和的公式是
{
a
1
×
(
q
n
−
1
)
q
−
1
(
q
≠
1
)
a
1
×
n
(
q
=
1
)
\left\{\begin{matrix} \frac{a_1\times (q^n-1)}{q-1}(q\neq 1) \\ a_1\times n(q=1)\end{matrix}\right.
{q−1a1×(qn−1)(q̸=1)a1×n(q=1)
证明:
若这个等比数列为 a 1 + a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n a_1+a_1\times q^1+a_1\times q^2+...+a_1\times q^n a1+a1×q1+a1×q2+...+a1×qn
设 S = a 1 + a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n S=a_1+a_1\times q^1+a_1\times q^2+...+a_1\times q^n S=a1+a1×q1+a1×q2+...+a1×qn
则 q S = a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n + a 1 × q n + 1 qS=a_1\times q^1+a_1\times q^2+...+a_1\times q^n+a_1\times q^{n+1} qS=a1×q1+a1×q2+...+a1×qn+a1×qn+1
相减得 q S − S = a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n + a 1 × q n + 1 − a 1 − a 1 × q 1 − a 1 × q 2 − . . . − a 1 × q n qS-S=a_1\times q^1+a_1\times q^2+...+a_1\times q^n+a_1\times q^{n+1}-a_1-a_1\times q^1-a_1\times q^2-...-a_1\times q^n qS−S=a1×q1+a1×q2+...+a1×qn+a1×qn+1−a1−a1×q1−a1×q2−...−a1×qn
简化得 ( q − 1 ) S = a 1 × q n + 1 − a 1 (q-1)S=a_1\times q^{n+1}-a_1 (q−1)S=a1×qn+1−a1
移向得 S = a 1 × ( q n + 1 − a 1 ) q − 1 S=\frac{a_1\times (q^{n+1}-a_1)}{q-1} S=q−1a1×(qn+1−a1)
证毕。
利用快速幂计算 q n q^n qn,再用逆元求答案即可。
代码:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const ll MOD=1000000007ll;
int T;
ll n,q,a,k,Read,ans;
char ch;
ll read()
{
Read=0;
ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9')
Read=(Read<<3)+(Read<<1)+ch-48,ch=getchar();
return Read;
}
void write(ll x)
{
if (x>9) write(x/10);
putchar(x%10+48);
}
ll power(ll x,ll m) //快速幂
{
ll ans=1;
while (m)
{
if (m&1) ans=ans*x%MOD;
x=x*x%MOD;
m>>=1;
}
return ans;
}
int main()
{
T=read();
while (T--)
{
a=read(),q=read(),n=read();
if (q==1) write(a*(n%MOD)%MOD); //特判
else
{
k=power((q-1)%MOD,MOD-2); //求逆元
ans=a%MOD*(power(q%MOD,n)-1)%MOD*k%MOD;
write(ans);
}
putchar(10);
}
return 0;
}