【JZOJ4229】学习神技【数论,数学】

题目大意:

题目链接:https://jzoj.net/senior/#main/show/4229
求首项为 a 1 a_1 a1,公比为 q q q,项数为 n n n的等比数列的和。


思路:

众所周知, n − 1 n-1 n1项的等比数列和的公式是
{ a 1 × ( q n − 1 ) q − 1 ( q ≠ 1 ) a 1 × n ( q = 1 ) \left\{\begin{matrix} \frac{a_1\times (q^n-1)}{q-1}(q\neq 1) \\ a_1\times n(q=1)\end{matrix}\right. {q1a1×(qn1)(q̸=1)a1×n(q=1)

证明:
若这个等比数列为 a 1 + a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n a_1+a_1\times q^1+a_1\times q^2+...+a_1\times q^n a1+a1×q1+a1×q2+...+a1×qn
S = a 1 + a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n S=a_1+a_1\times q^1+a_1\times q^2+...+a_1\times q^n S=a1+a1×q1+a1×q2+...+a1×qn
q S = a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n + a 1 × q n + 1 qS=a_1\times q^1+a_1\times q^2+...+a_1\times q^n+a_1\times q^{n+1} qS=a1×q1+a1×q2+...+a1×qn+a1×qn+1
相减得 q S − S = a 1 × q 1 + a 1 × q 2 + . . . + a 1 × q n + a 1 × q n + 1 − a 1 − a 1 × q 1 − a 1 × q 2 − . . . − a 1 × q n qS-S=a_1\times q^1+a_1\times q^2+...+a_1\times q^n+a_1\times q^{n+1}-a_1-a_1\times q^1-a_1\times q^2-...-a_1\times q^n qSS=a1×q1+a1×q2+...+a1×qn+a1×qn+1a1a1×q1a1×q2...a1×qn
简化得 ( q − 1 ) S = a 1 × q n + 1 − a 1 (q-1)S=a_1\times q^{n+1}-a_1 (q1)S=a1×qn+1a1
移向得 S = a 1 × ( q n + 1 − a 1 ) q − 1 S=\frac{a_1\times (q^{n+1}-a_1)}{q-1} S=q1a1×(qn+1a1)
证毕。

利用快速幂计算 q n q^n qn,再用逆元求答案即可。


代码:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;

const ll MOD=1000000007ll;
int T;
ll n,q,a,k,Read,ans;
char ch;

ll read()
{
	Read=0;
	ch=getchar();
	while (ch<'0'||ch>'9') ch=getchar();
	while (ch>='0'&&ch<='9')
		Read=(Read<<3)+(Read<<1)+ch-48,ch=getchar();
	return Read;
}

void write(ll x)
{
	if (x>9) write(x/10);
	putchar(x%10+48);
}

ll power(ll x,ll m)  //快速幂
{
	ll ans=1;
	while (m)
	{
		if (m&1) ans=ans*x%MOD;
		x=x*x%MOD;
		m>>=1;
	}
	return ans;
}

int main()
{
	T=read();
	while (T--)
	{
		a=read(),q=read(),n=read();
		if (q==1) write(a*(n%MOD)%MOD);  //特判
		else
		{
			k=power((q-1)%MOD,MOD-2);  //求逆元
			ans=a%MOD*(power(q%MOD,n)-1)%MOD*k%MOD;
			write(ans);
		}
		putchar(10);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值