【JZOJ4235】序列【数论,数学】

题目大意:

题目链接:https://jzoj.net/senior/#main/show/4235
给出一个数列,求这个数列的尽量靠前的三个数字保证它们能够组成三角形。


思路:

n ≤ 1 0 5 n\leq 10^5 n105,几乎是不可能做的。
正常来说,为了满足尽量靠前,所以会从前往后枚举。所以为了卡掉这种方法,它肯定要让前面尽量更多的数字满足无法组成三角形。但是题目说 x ≤ 1 0 9 x\leq 10^9 x109,也就是说,既要满足不组成三角形,数列中任意数字有不能超过 1 0 9 10^9 109
那么设前两个数字是 a 1 a_1 a1 a 2 a_2 a2,那么接下来的数字为了不能组成三角形又要尽量小,所以肯定是 a 3 = a 1 + a 2 a_3=a_1+a_2 a3=a1+a2,接下来 a 4 = a 2 + a 3 a_4=a_2+a_3 a4=a2+a3
我们发现,这是斐波那契数列,而 F i b [ 50 ] Fib[50] Fib[50]已经超过 1 0 9 10^9 109,所以答案一定在前 50 50 50个数字内。所以 m n 3 mn^3 mn3的复杂度是可过的。


代码:

#include <cstdio>
#include <algorithm>
using namespace std;

int n,m,x,y,a[100010];
bool ok;

void print(int x,int y,int z)
{
	printf("%d ",min(x,min(y,z)));
	printf("%d ",x+y+z-max(x,max(y,z))-min(x,min(y,z)));
	printf("%d\n",max(x,max(y,z)));
}

int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	scanf("%d",&m);
	while (m--)
	{
		scanf("%d",&x);
		if (x==1)  //修改操作
		{
			scanf("%d%d",&x,&y);
			a[x]=y;
		}
		else
		{
			ok=1;
			for (int i=1;i<=n&&ok;i++)
				for (int j=1;j<i&&ok;j++)
					if (i!=j)
						for (int k=1;k<j;k++)
							if (i!=k&&k!=j&&a[i]+a[j]>a[k]&&abs(a[i]-a[j])<a[k])  //符合三角形性质
							{
								print(a[i],a[j],a[k]);
								ok=0;
								break;
							}
			if (ok) printf("-1 -1 -1\n");					
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值