【BZOJ2721】【洛谷P1145】樱花【数论,数学】

题目大意:

题目链接:

BZOJ:https://www.lydsy.com/JudgeOnline/problem.php?id=2721
洛谷:https://www.luogu.org/problemnew/show/P1445

求方程 1 x + 1 y = 1 n ! \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} x1+y1=n!1 的正整数解的组数


思路:

神题啊 o r z orz orz

以下内容大部分摘自 这里

先通分
x + y x y = 1 n ! \frac{x+y}{xy}=\frac{1}{n!} xyx+y=n!1
交叉相乘
( x + y ) n ! = x y (x+y)n!=xy (x+y)n!=xy
移项得
− ( x + y ) n ! + x y = 0 -(x+y)n!+xy=0 (x+y)n!+xy=0
配方
( n ! ) 2 − ( x + y ) n ! + x y = ( n ! ) 2 (n!)^2-(x+y)n!+xy=(n!)^2 (n!)2(x+y)n!+xy=(n!)2
( x − n ! ) ( y − n ! ) = ( n ! ) 2 (x-n!)(y-n!)=(n!)^2 (xn!)(yn!)=(n!)2
a = ( x − n ! ) , b = ( y − n ! ) a=(x-n!),b=(y-n!) a=(xn!),b=(yn!)
a b = ( n ! ) 2 ab=(n!)^2 ab=(n!)2
由于 n ! = p 1 c 1 × p 2 c 2 × . . . × p m c m n!=p_1^{c1}\times p_2^{c2}\times ...\times p_m^{cm} n!=p1c1×p2c2×...×pmcm,所以 ( n ! ) 2 = p 1 2 c 1 × p 2 2 c 2 × . . . × p m 2 c m (n!)^2=p_1^{2c1}\times p_2^{2c2}\times ...\times p_m^{2cm} (n!)2=p12c1×p22c2×...×pm2cm
所以总共 a a a的取值就是 ( 2 c 1 + 1 ) ( 2 c 2 + 1 ) . . . ( 2 c m + 1 ) (2c_1+1)(2c_2+1)...(2c_m+1) (2c1+1)(2c2+1)...(2cm+1)
枚举 1 ∼ n 1\sim n 1n,把每个数字分解质因数就可以求出答案了。


代码:

#include <cstdio>
#define rr register
using namespace std;
typedef long long ll;

const int MOD=1e9+7,N=1e6+10;
int n,prime[N],m,v[N];
ll cnt[N],ans;

void find_prime(int k)
{
	for (rr int i=2;i<=n;i++)
	{
		if (!v[i])
		{
			v[i]=i;
			prime[++m]=i;
		}
		for (rr int j=1;j<=m;j++)
		{
			if (prime[j]>v[i]||prime[j]*i>n) break;
			v[i*prime[j]]=prime[j];
		}
	}
}

int main()
{
	scanf("%d",&n);
	find_prime(n);
	for (rr int i=1;i<=n;i++)
		for(rr int j=i;j!=1;j/=v[j])
          cnt[v[j]]++;
	ans=1;
	for (rr int i=1;i<=m;i++)
		ans=(ans*(cnt[prime[i]]*2+1))%MOD;
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值