【JZOJ4786】小a的强迫症【数论,数学】

题目大意:

题目链接:https://jzoj.net/senior/#main/show/4786
n n n种珠子,要求把这些珠子放在一条直线上,且第 i i i种珠子的最后一个的位置 l a s t i last_i lasti满足 l a s t 1 &lt; l a s t 2 &lt; . . . &lt; l a s t n last_1&lt;last_2&lt;...&lt;last_n last1<last2<...<lastn。求满足要求的方案数。


思路:

假设我们求完了前 i i i种珠子按要求摆放的方案数,现在要求第 i + 1 i+1 i+1种珠子的方案数。
s u m [ i − 1 ] sum[i-1] sum[i1]表示前 i − 1 i-1 i1种珠子的总个数,那么第 i i i种珠子的最后一个就应该放在这 s u m [ i − 1 ] sum[i-1] sum[i1]个珠子后面,剩余的第 i i i种珠子就应该全部放在这颗珠子的前面。
在这里插入图片描述

那么如果总共有 a [ i ] a[i] a[i]个第 i i i种珠子,那么剩余的 a [ i ] − 1 a[i]-1 a[i]1个珠子都要放在上图蓝色珠子的前面。
而放置的空隙总共是有 s u m [ i − 1 ] + 1 sum[i-1]+1 sum[i1]+1个的(如下图)
在这里插入图片描述

A : A: A: 所以放置方案数是 s u m [ i − 1 ] a [ i ] − 1 sum[i-1]^{a[i]-1} sum[i1]a[i]1吗?

不是!
如果我们有 3 3 3个珠子要放,那么就有可能为以下6种情况( x − y x-y xy表示第 x x x颗珠子放第 y y y个位置)

  • 1 − 2 , 2 − 5 , 3 − 6 1-2,2-5,3-6 12,25,36
  • 1 − 2 , 2 − 6 , 3 − 5 1-2,2-6,3-5 12,26,35
  • 1 − 5 , 2 − 2 , 3 − 6 1-5,2-2,3-6 15,22,36
  • . . . . . . ...... ......

而这6种情况实质上是一模一样的,这样就会计算重复的。

A : A: A: 所以放置方案数是 s u m [ i − 1 ] a [ i ] − 1 s u m [ i − 1 ] ! \frac{sum[i-1]^{a[i]-1}}{sum[i-1]!} sum[i1]!sum[i1]a[i]1吗?

依然不是。
虽然有一些排列方案会重复 s u m [ i − 1 ] ! sum[i-1]! sum[i1]!次,但是也有一些方案重复的次数小于 s u m [ i − 1 ] ! sum[i-1]! sum[i1]!,同时也有一些方案是不会重复的。
例如 1 − 3 , 2 − 3 , 3 − 3 1-3,2-3,3-3 13,23,33这种情况它就只会算一次。
很显然,这种计算是因为选择的位置本身的重复而导致的。例如上例选择的位置3就重复了,但是3,3,3的全排列只有3,3,3一种情况,所以就只会出现一次。
1 − 4 , 2 − 1 , 3 − 1 1-4,2-1,3-1 14,21,31就会出现3次,因为4,1,1的全排列有 ( 1 , 1 , 4 ) , ( 1 , 4 , 1 ) , ( 4 , 1 , 1 ) (1,1,4),(1,4,1),(4,1,1) (1,1,4),(1,4,1),(4,1,1)三种。

所以放置 a [ i ] − 1 a[i]-1 a[i]1个珠子的方案数还需要分类讨论一下。

  • 如果 a [ i ] − 1 a[i]-1 a[i]1个珠子位置各不相同,那么就相当于 s u m [ i − 1 ] sum[i-1] sum[i1]个空位种选择 a [ i ] − 1 a[i]-1 a[i]1个的方案数,所以就是 C s u m [ i − 1 ] a [ i ] − 1 C^{a[i]-1}_{sum[i-1]} Csum[i1]a[i]1
  • 如果 a [ i ] − 1 a[i]-1 a[i]1个珠子位置有1个相同,那么就相当于 s u m [ i − 1 ] sum[i-1] sum[i1]个空位种选择 a [ i ] − 2 a[i]-2 a[i]2个的方案数,但是这个相同的位置可能是选择的位置中的任意一个,所以就是 C s u m [ i − 1 ] a [ i ] − 2 × C a [ i ] − 2 1 C^{a[i]-2}_{sum[i-1]}\times C^{1}_{a[i]-2} Csum[i1]a[i]2×Ca[i]21$**
  • 以此类推。

所以第 i i i中珠子的方案数是
∑ j = 2 a [ i ] − 1 C ( s u m [ i − 1 ] + 1 , j ) × C ( a [ i ] − 2 , j − 1 ) \sum^{a[i]-1}_{j=2} C(sum[i-1]+1,j)\times C(a[i]-2,j-1) j=2a[i]1C(sum[i1]+1,j)×C(a[i]2,j1)

最终答案就是
∑ i = 2 n ∑ j = 2 a [ i ] − 1 C ( s u m [ i − 1 ] + 1 , j ) × C ( a [ i ] − 2 , j − 1 ) \sum^{n}_{i=2}\sum^{a[i]-1}_{j=2} C(sum[i-1]+1,j)\times C(a[i]-2,j-1) i=2nj=2a[i]1C(sum[i1]+1,j)×C(a[i]2,j1)

均摊思想得时间复杂度为 O ( ∑ i = 1 n a [ i ] ) O(\sum^{n}_{i=1} a[i]) O(i=1na[i])(即 O ( s u m [ n ] ) O(sum[n]) O(sum[n])),由于题目中说了所有珠子数量和小于 5 × 1 0 5 5\times 10^5 5×105,所以是可以过去的。

吐槽:这道题卡了我1.5h   woc \color{white}\texttt{吐槽:这道题卡了我1.5h woc} 吐槽:这道题卡了我1.5h woc


代码:

#include <cstdio>
using namespace std;
typedef long long ll;

const int N=100010,MOD=998244353;
ll a[N],sum[N],fac[N*5],inv[N*5],ans,s;
int n;

ll power(ll x,ll y)
{
	ll ans=1;
	while (y)
	{
		if (y&1) ans=ans*x%MOD;
		x=x*x%MOD;
		y>>=1;
	}
	return ans;
}

ll C(ll x,ll y)
{
	return fac[x]* inv[y] %MOD *inv[x-y] %MOD;
}

int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		sum[i]=sum[i-1]+a[i];
	}
	fac[0]=1; inv[0]=1;
	for (int i=1;i<=500000;i++)
	{
		fac[i]=fac[i-1]*i%MOD;
		inv[i]=power(fac[i],MOD-2);
	}
	ans=1;
	for (int i=2;i<=n;i++)
	{
		s=0;
		for (int j=1;j<a[i];j++) 
			s=(s+C(sum[i-1]+1,j)*C(a[i]-2,j-1))%MOD;
		if (!s) s=1;
		ans=ans*s%MOD;
	}
	printf("%lld",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值