【洛谷P4139】上帝与集合的正确用法【扩展欧拉定理】

题目大意:

题目链接:https://www.luogu.org/problem/P4139
给出 p p p,求 2 2 2 . . . m o d   p 2^{2^{2^{...}}} mod\ p 222...mod p


思路:

根据欧拉定理,有
a p ≡ a p   m o d   φ ( p ) + φ ( p )   ( m o d   p ) a^p\equiv a^{p\ mod\ \varphi(p)+\varphi(p)}\ (mod\ p) apap mod φ(p)+φ(p) (mod p)
在这道题中,我们令 q = 2 2 2 . . . q=2^{2^{2^{...}}} q=222...,那么题目就转变为了求 2 q   m o d   p 2^q\ mod\ p 2q mod p
然后利用欧拉定理,所求即为 2 q   m o d   φ ( q ) + φ ( q ) ( m o d p ) 2^{q\ mod\ \varphi(q)+\varphi(q)}(mod p) 2q mod φ(q)+φ(q)(modp)
其中 q   m o d   φ ( q ) q\ mod \ \varphi(q) q mod φ(q)即为 2 2 2 . . . m o d   φ ( q ) 2^{2^{2^{...}}}mod\ \varphi(q) 222...mod φ(q),递归继续求解即可。直到 q = 1 q=1 q=1时,答案即为0。
每次用快速幂求出答案, p h i phi phi是可以用线性筛预处理的。
时间复杂度近似 O ( p ) O(p) O(p)


代码:

#include <cstdio>
using namespace std;
typedef long long ll;

const int N=10000010;
int T,p,m,prime[N],v[N],phi[N];

void euler(int n)  //预处理phi
{
	for (int i=2;i<=n;i++)
	{
		if (!v[i]) prime[++m]=i,v[i]=i,phi[i]=i-1;
		for (int j=1;j<=m;j++)
		{
			if (prime[j]>v[i] || prime[j]>n/i) break;
			v[i*prime[j]]=prime[j];
			if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
				else phi[i*prime[j]]=phi[i]*prime[j];
		}
	}
}

ll power(ll x,ll mod,ll k)  //快速幂
{
	ll ans=1;
	for (;k;k>>=1,x=x*x%mod)
		if (k&1) ans=ans*x%mod;
	return ans;
}

ll solve(ll p)
{
	if (p==1) return 0;
	return power(2,p,solve(phi[p])+phi[p]);
}

int main()
{
	euler(1e7);
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d",&p);
		printf("%lld\n",solve((ll)p));
	}
	return 0;
} 
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值