题意
给出数对(a,b),每次可以做2种操作使这个数对变成(a,a+b)或(a+b,b),现在a,b=1,求出至少进行几次操作可以让a和b其中一个数=n。
思路
刚开始打了个深搜可以拿个50分,加上了一个剪枝拿了60分,好像有大佬直接深搜可以AC。后来听大佬解释,大致是这样的:
给出(a,b),求还原回(1,1),方法是:a>b (a-b,b),a<=b (a,b-a)。
对于给定的n,我们可以枚举一个i(1~n-1),求出(n,i)的还原次数。
但是这样子一次一次地减太慢了,我们可以用一个像辗转相除法的东西:a>b (a%b,b),a<=b (a,b%a),每次的次数是a/b,b/a。
因为a>b的话a一直减b剩下的数就是a%b,减的次数就是a/b了。
代码
#include<cstdio>
#include<algorithm>
using namespace std;
int n,ans=2147483647;
int dfs(int x,int y)
{
if (!y) return 2147483647/3;//y=0说明不能变成(1,1),返回一个很大的值
if (y==1) return x-1;//当y=1时,我们会让x一直减1,次数就是x-1
return dfs(y,x%y)+x/y;
}
int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++)
ans=min(ans,dfs(n,i));
printf("%d",ans);
}