题意
输出n个盘子在4个塔的汉诺塔问题最少要多少步。
思路
我们设f[n]为n个盘子在4塔的汉诺塔问题下需要的最少步数,d[i]为i个盘子在3塔的汉诺塔问题下需要的最少步数,可以得出动态转移方程:
f[n]=min(2∗f[i]+d[n−i])
f
[
n
]
=
m
i
n
(
2
∗
f
[
i
]
+
d
[
n
−
i
]
)
表示我们在4塔模式下把前i个盘移到B塔上,然后在3塔模式下把n-i个盘移到D塔上,再在4塔模式下把之前i个塔移到D塔上。
代码
#include<cstdio>
#include<algorithm>
using namespace std;
int f[13],d[13];
int main()
{
for (int i=1;i<=12;i++) d[i]=2*d[i-1]+1;//预处理3塔模式下每个盘的步数
for (int n=1;n<=13;n++)
{
f[n]=2*f[1]+d[n-1];//先赋个初值
for (int j=2;j<n;j++)
f[n]=min(2*f[j]+d[n-j],f[n]);//动态转移方程
if (n==1) continue;
else printf("%d\n",f[n]);
}
}