【数学 乘法逆元】luogu_5431 乘法逆元2

题意

给出 n n n个数 A A A,和一个 k k k,求:
∑ i = 1 n k i a i \sum_{i=1}^{n}\frac{k^i}{a_i} i=1naiki

思路

看起来就是若干个分数相加,我们可以通分得到:
∑ i = 1 n k i ( s / a i ) s \sum_{i=1}^{n}\frac{k^i(s/a_i)}{s} i=1nski(s/ai)
其中 s s s为所有数的乘积, s / a i s/a_i s/ai用前缀后缀积处理就可以了。

代码

#include<cstdio>

int n, p, k, ans;
int a[5000001], pre[5000001], nxt[5000001];

int read() {
	int res = 0, f = 1;
	char c = getchar();
	while (c < '0' || c > '9') c = getchar(), f = c == '-' ? -1 : f;
	while (c >= '0' && c <= '9') res = (res << 3) + (res << 1) + c - 48, c = getchar();
	return res * f;
}

int power(int a, int b) {
	long long res = 1;
	for (; b; b >>= 1) {
		if (b & 1) res = res * a % p;
		a = (long long)a * a % p;
	}
	return res;
}

int main() {
	n = read();
	p = read();
	k = read();
	for (int i = 1; i <= n; i++)
		a[i] = read();
	pre[0] = 1;
	nxt[n + 1] = 1;
	for (int i = 1; i <= n; i++) {
		pre[i] = (long long)pre[i - 1] * a[i] % p;
		nxt[n - i + 1] = (long long)nxt[n - i + 2] * a[n - i + 1] % p;
	}
	for (int i = 1, j = k; i <= n; i++, j = (long long)j * k % p)
		ans = (ans + (long long)j * pre[i - 1] % p * nxt[i + 1]) % p;
	printf("%d", (long long)ans * power(pre[n], p - 2) % p);
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值