题意
在一个方格图上有若干个小格,其中满足小格互相连通,且不是空格也互相连通。
求小格两两之间的最短路的总和。
思路
暴力 30 30 30分很好打,但是后面枚举小格一定是 O ( n 2 ) O(n^2) O(n2)的,所以我们考虑别的做法。
根据图的性质,我们可以把横着连通小格缩成一个点,将相邻的小格的点连边。可以发现,一条连接 ( u , v ) (u,v) (u,v)的边对答案的贡献为 s i z e [ v ] ∗ ( n − s i z e [ v ] ) size[v]*(n-size[v]) size[v]∗(n−size[v]),其中 s i z e [ v ] size[v] size[v]为以 v v v为根的所有点中小格数量的总和。
对于点中的小格的距离,只用再把竖着的小格缩点做一遍就可以了。
代码
#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
const int p = 1000000000;
struct node {
int x, y;
}a[100001];
std::map<int, int> h;
int n, sx, sy, tot, ans;
int head[100001], next[200001], ver[200001], be[100001], size[100001];
bool operator <(const node &a, const node &b) {
return a.x < b.x || a.x == b.x && a.y < b.y;
}
int id(int x, int y) {
return x * n + y;
}
void add(int u, int v) {
if (ver[head[u]] == v) return;
ver[++tot] = v;
next[tot] = head[u];
head[u] = tot;
}
void init() {
std::sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++)
h[id(a[i].x, a[i].y)] = i;
for (int i = n; i >= 1; i--) {
int x = a[i].x, y = a[i].y;
if (!be[i]) {
be[i] = i;
size[i] = 1;
for (int j = i - 1; j >= 1; j--)
if (a[j].y == a[j + 1].y - 1) be[j] = i, size[i]++;
else break;
}
int k = h[id(x + 1, y)];
if (k) add(be[i], be[k]), add(be[k], be[i]);
}
}
void dp(int u, int fa) {
for (int i = head[u]; i; i = next[i]) {
if (ver[i] == fa) continue;
dp(ver[i], u);
size[u] += size[ver[i]];
}
for (int i = head[u]; i; i = next[i])
if (ver[i] != fa) ans = (ans + (long long)(n - size[ver[i]]) * size[ver[i]]) % p;
}
int main() {
//file(city);
scanf("%d", &n);
sx = sy = 2147483646;
for (int i = 1; i <= n; i++)
scanf("%d %d", &a[i].x, &a[i].y), sx = std::min(sx, a[i].x), sy = std::min(sy, a[i].y);
for (int i = 1; i <= n; i++)
a[i].x -= sx - 1, a[i].y -= sy - 1;
init();
dp(be[1], 0);
tot = 0;
memset(head, 0, sizeof(head));
memset(be, 0, sizeof(be));
memset(size, 0, sizeof(size));
for (int i = 1; i <= n; i++)
std::swap(a[i].x, a[i].y);
h.clear();
init();
dp(be[1], 0);
printf("%d", ans);
}