【数学 组合计数 中国剩余定理 欧拉定理】luogu_2480 BZOJ_1951 古代猪文

题意

给出 n , q ( 1 ≤ q , n ≤ 1 0 9 ) n,q(1\leq q,n\leq 10^9) n,q(1q,n109),计算 q ∑ d ∣ n C n d   m o d   999911659 q^{\sum_{d|n}C^{d}_{n}}\ mod\ 999911659 qdnCnd mod 999911659

思路

因为 999911659 999911659 999911659是个质数,根据欧拉定理得: q ∑ d ∣ n C n d ≡ q ∑ d ∣ n C n d   m o d   999911658 ( m o d   999911659 ) q^{\sum_{d|n}C^{d}_{n}}\equiv q^{\sum_{d|n}C^{d}_{n}\ mod\ 999911658}(mod\ 999911659) qdnCndqdnCnd mod 999911658(mod 999911659)
计算 ∑ d ∣ n C n d   m o d   999911658 \sum_{d|n}C^{d}_{n}\ mod\ 999911658 dnCnd mod 999911658
分解质因数 999911658 = 2 ∗ 3 ∗ 4679 ∗ 35617 999911658=2*3*4679*35617 999911658=23467935617
a 1 , a 2 , a 3 , a 4 为 ∑ d ∣ n C n d a_1,a_2,a_3,a_4为{\sum_{d|n}C^{d}_{n}} a1,a2,a3,a4dnCnd 2 , 3 , 4679 , 35617 2,3,4679,35617 2,3,4679,35617四个取模的结果,求解线性同余方程组:
{ x   m o d   2 = a 1 x   m o d   3 = a 2 x   m o d   4679 = a 3 x   m o d   35617 = a 4 \left\{\begin{matrix} x\ mod\ 2=a_1\\ x\ mod\ 3=a_2\\ x\ mod\ 4679=a_3\\ x\ mod\ 35617=a_4 \end{matrix}\right. x mod 2=a1x mod 3=a2x mod 4679=a3x mod 35617=a4
即可得到 ∑ d ∣ n C n d   m o d   999911658 \sum_{d|n}C^{d}_{n}\ mod\ 999911658 dnCnd mod 999911658的最小非负整数解,快速幂一下就好了。

代码

#include<cstdio>

int q, n, ans;
int m[] = {0, 2, 3, 4679, 35617}, a[5], fac[35618];

int power(int a, int b, int p) {
	long long res = 1;
	for (; b; b >>= 1) {
		if (b & 1) res = res * a % p;
		a = (long long)a * a % p;
	}
	return res;
}

void init(int p) {
	fac[0] = 1;
	for (int i = 1; i < p; i++)
		fac[i] = fac[i - 1] * i % p;
}

long long C(int n, int m, int p) {
	if (n < m) return 0;
	return fac[n] * power(fac[m], p - 2, p) % p * power(fac[n - m], p - 2, p) % p;
}

long long lucas(int n, int m, int p) {
	if (!m) return 1;
	return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p;
}

int main() {
	scanf("%d %d", &n, &q);
	if (q % 999911659 == 0) {
		printf("0");
		return 0;
	}
	for (int i = 1; i <= 4; i++) {
		init(m[i]);
		for (int j = 1; j * j <= n; j++) {
			if (n % j) continue;
			a[i] = (a[i] + lucas(n, j, m[i])) % m[i];
			if (n / j != j) a[i] = (a[i] + lucas(n, n / j, m[i])) % m[i];
		}
	}
	for (int i = 1; i <= 4; i++) {
		int M = 999911658 / m[i];
		ans = (ans + (long long)a[i] * M * power(M, m[i] - 2, m[i])) % 999911658;
	}
	printf("%d", power(q, ans, 999911659));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值