【数据结构 动态规划 单调栈】JZOJ_6305 最小值

题意

给出 A A A,把它分成若干段,段 [ l , r ] [l,r] [l,r]的贡献为 f ( m i n { a l . . r } ) = f ( x ) = A x 3 + B x 2 + C x + D f(min\{a_{l..r}\})=f(x)=Ax^3+Bx^2+Cx+D f(min{al..r})=f(x)=Ax3+Bx2+Cx+D,求贡献最大。

思路

f i f_i fi为前 i i i个已划分的贡献,得:
f i = f j + F ( m i n { a j + 1.. i } ) f_i=f_{j}+F(min\{a{j+1..i}\}) fi=fj+F(min{aj+1..i})
然后是 O ( n 2 ) O(n^2) O(n2)的,我们考虑优化。

用单调递增的栈维护前面的最小值转折点,在这个区间内, F ( x ) F(x) F(x)的值相同,所以维护一个最大的 f f f进行转移。(糊

#include <cstdio>
#include <algorithm>
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)

long long n, A, B, C, D;
long long a[200001], f[200001];
struct node {
	long long id, maxx, ans;
}stack[200001];

long long F(long long x) {
	return A * x * x * x + B * x * x + C * x + D;
}

int main() {
	file(min);
	scanf("%lld %lld %lld %lld %lld", &n, &A, &B, &C, &D);
	for (int i = 1; i <= n; i++)
		scanf("%lld", a + i);
	int top = 0;
	for (int i = 1; i <= n; i++) {
		long long w = f[i - 1];
		while (top && a[stack[top].id] >= a[i]) w = std::max(w, stack[top--].maxx);
		stack[++top].maxx = w;
		stack[top].id = i;
		if (top > 1) stack[top].ans = std::max(stack[top - 1].ans, w + F(a[i]));
		else stack[top].ans = w + F(a[i]);
		f[i] = stack[top].ans;
	}
	printf("%lld", f[n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值