【SSL】完全背包

这篇博客介绍了完全背包问题,其中每种物品数量无限,目标是在不超过背包最大载重量M的情况下,选择物品以最大化价值。内容包括问题描述、输入输出格式、样例输入输出以及解题思路,重点讲解了使用动态规划的解决方法。
摘要由CSDN通过智能技术生成

完全背包


Description

设有n 种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n 种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于M,而价值的和为最大。

Input

第一行:两个整数,M(背包容量,M<= 200)和N(物品数量,N<= 30); 第2…N+1 行:每行二个整数Wi,Ui,表示每个物品的重量和价值。

Output

仅一行,一个数,表示最大总价值。

Sample Input


12 4 
2  1 
3  3 
4  5 
7  9 

Sample Output

15

解题思路

这道题的方法是动态规划中的完全背包,其实就是要多买几个。
它的动态转换公式是: f [ j ] = m a x ( f [ j ] , f [ j − w [ i ] ] + p [ i ] ) ; f[j]=max(f[j],f[j-w[i]]+p[i]); f[j]=max(f[j],f[jw[i]]+p[i]);

#include<iostream>
#include<iomanip>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
int n,w[300],m,p[1000],f[1000];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=m;i++) 
	 cin>>w[i]>>p[i];
	for(int i=1;i<=m;i++)
	 for(int j=w[i];j<=n;j++)//当背包容量为j,处理前i个物品的最大价值
	 {
	 	f[j]=max(f[j],f[j-w[i]]+p[i]);//动态转换公式
	 }
	cout<<f[n];
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值