完全背包
Description
设有n 种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n 种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于M,而价值的和为最大。
Input
第一行:两个整数,M(背包容量,M<= 200)和N(物品数量,N<= 30); 第2…N+1 行:每行二个整数Wi,Ui,表示每个物品的重量和价值。
Output
仅一行,一个数,表示最大总价值。
Sample Input
12 4
2 1
3 3
4 5
7 9
Sample Output
15
解题思路
这道题的方法是动态规划中的完全背包,其实就是要多买几个。
它的动态转换公式是:
f
[
j
]
=
m
a
x
(
f
[
j
]
,
f
[
j
−
w
[
i
]
]
+
p
[
i
]
)
;
f[j]=max(f[j],f[j-w[i]]+p[i]);
f[j]=max(f[j],f[j−w[i]]+p[i]);
#include<iostream>
#include<iomanip>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
int n,w[300],m,p[1000],f[1000];
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
cin>>w[i]>>p[i];
for(int i=1;i<=m;i++)
for(int j=w[i];j<=n;j++)//当背包容量为j,处理前i个物品的最大价值
{
f[j]=max(f[j],f[j-w[i]]+p[i]);//动态转换公式
}
cout<<f[n];
return 0;
}