最短路径问题
Time Limit:10000MS Memory Limit:65536K
Total Submit:312 Accepted:160
Case Time Limit:1000MS
Description
平面上有n个点(N<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点直线的距离。现在的任务是找出从一点到另一点之间的最短路径。
Input
输入文件short.in,共有n+m+3行,其中:
第一行为一个整数n。
第2行到第n+1行(共n行),每行的两个整数x和y,描述一个点的坐标(以一个空格隔开)。
第n+2行为一个整数m,表示图中的连线个数。
此后的m行,每行描述一条连线,由两个整数I,j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。
Output
输出文件short.out仅一行,一个实数(保留两位小数),表示从S到T的最短路径的长度。
Sample Input
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5
Sample Output
3.41
Source
elba
var
a:array[0..1000,0..1000]of real;
l:array[0..1000]of real;//起点到每个点的总距离
z:array[0..1000,1..2]of longint;
v:array[0..1000]of boolean;
n,m,x,y,s,t,i,j,k:longint;
min:real;
begin
readln(n);
for i:=1 to n do readln(z[i,1],z[i,2]);
readln(m);
fillchar(a,sizeof(a),$7F);
for i:=1 to m do
begin
read(x,y);
a[x,y]:=sqrt(sqr(z[x,1]-z[y,1])+sqr(z[x,2]-z[y,2]));//求他们之间的距离
a[y,x]:=a[x,y];//无向图
end;
read(s,t);
fillchar(v,sizeof(v),true);
v[s]:=false;
for i:=1 to n do l[i]:=a[s,i];//目前从起点到每个点的最小值
for i:=1 to n do
begin
min:=maxlongint;//方便比较
for j:=1 to n do
if (v[j])and(l[j]<min) then
begin
k:=j;
min:=l[j];//目前的最小距离
end;
if k<>0 then//如果目前这个点可以有更小走到其它点的距离
begin
v[k]:=false;//走过了
for j:=1 to n do
if (v[j])and(l[j]>a[k,j]+l[k]) then l[j]:=l[k]+a[k,j];//有点像状态转移
end;
end;
write(l[t]:0:2);//输出到终点的最短路径
end.