Description
黄巾之乱后,郭嘉到了袁绍的统辖地区,结果袁绍想给我们的郭嘉大大一个下马威,且正值他招募将领的时候,于是乎,袁绍就让郭嘉大大去替他招募将领。
这时候有很多很多的将领到袁绍处报到(别人家底厚,四世三公哪~~),每个将领的编号依次为1、2、3……N,第i个将领的武力值为3^(i-1)。
袁绍需要我们的郭嘉大大招纳任意个将领,而郭嘉选中的将领有一个“总武力值”为各个将领的武力值之和。例如:郭嘉这一次招募了第一个将领和第三个将领,那么“总武力值”为1+9=10。
袁绍想知道,他可以获得的第k大的“总武力值”是多少,请你帮助我们的郭嘉大大告诉袁绍这个第k大的“总武力值”。
从文件中读入k,输出郭嘉能够获得的,第k大的“总武力值”。
Input
数据包含n+1行,第一行读入n(n≤100)。以下n行每行包含一个k。
Output
输出包含n行,每行输出一个对应的结果。
Sample Input
1
7
Sample Output
13
Data Constraint
Hint
样例说明:
郭嘉能够拿到的总武力值从小到大为1、3、4、9、10、12、13……所以第7大的总武力值是13。
对于50%的输入文件,有k≤5000。
对于100%的输入文件,有k≤2^31-1。
题解:
本题是模拟;
题目说:第i个将领的武力值为3^(i-1), 就比如第一个将领=31-1=30=1。通过样例我们发现,13是由9+3+1变成(便乘)的,9+3+1=32+31+30;也就是3个3的次方组合而成的。由此可得,我们可以预处理出各个将领的武力值,用于组合出不同的“总武力值”。
而且,题目给的k的数据是k≤231-1,因为330>231-1,那么就以第32个将领作为预处理的结尾(不过我们也可以直接将i作为3的指数,不用去管i-1)
那么我们怎么组合将领,才能满足题目要求呢?(其实,题目的这个k,应该是第k小才对……-_-||)
我们可以发现第1小是1,第2小是3,第3小是4。如果我们用二进制去表示k的话,第1小是1,第10小是3,第11小是4,那么我们可以清晰地发现将k转成二进制之后,1表示加上当前位置对应的3的次方,0表示不选。那么问题就解决了
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
int n,k;
long long a[35],ans;
void transform(int k){
int sum=-1;//记录位置
while (k>0){
sum++;
if (k%2==1) ans+=a[sum];
k/=2;
}
}
int main(){
freopen("recruitment.in","r",stdin);
freopen("recruitment.out","w",stdout);
scanf("%d",&n);
a[0]=1;
for (int i=1; i<=31; i++) a[i]=a[i-1]*3;
while(n--){
scanf("%d",&k);
ans=0;
transform(k);
printf("%lld\n",ans);
}
fclose(stdin); fclose(stdout);
}