BIO,NIO,AIO介绍

1. BIO(同步 , 阻塞)
BIO是Java1.4之前所使用的一个 同步并阻塞形 IO , 原因是 Socket是阻塞的, 从serverSocket的accept就开始阻塞 ,到 read方法也是阻塞的 .

改进方式:
1.使用while循环解决 客户端多请求问题
2.使用多线程解决 客户端并发问题
可以使用线程池来实现解决并发问题 但是有很大的局限性:1. 得确切的知道客户端的请求数量从而构造多少条线程. 2. 如果请求数量过多 则会导致cup 大量的资源耗费在线程的切换中.
2. NIO(同步, 非阻塞)

图解:
在这里插入图片描述

1:客户端通过ip和端口找到服务器端,操作系统内核先处理
2:操作系统内核通知Selector,有客户端请求连接
3:Selector向内核注册连接建立的监听
4:内核发现有人能处理这个连接,于是开始和客户端建立连接
5:连接成功,通知Selector,同时创建channel
6:客户端发送数据,放入缓冲区。
7:Channel 不会直接处理字节数据,而是通过 Buffer 对象来处理数据
8:Selector会不断 轮询注册在其上的 Channel,如果某个 Channel 上面发生读或者写事件,这个 Channel 就处于就绪状态,会被 Selector 轮询出来,进行后续的 I/O 操作
小结:
1:nio模式中整个过程服务器都没有被阻塞
2:bio是傻傻地等待客户端来连,而nio不等,有连接来了告诉我。所以nio能一次性处理多个客户端请求,一个客户端对应一个channel
3:bio是傻傻等待客户端发数据,而nio不等,通过轮询感知channel是否有数据流。
名词解释
NIO 三大核心部分:Channel(通道),Buffer(缓冲区), Selector(选择器)。

Buffer :容器对象,包含一些要写入或者读出的数据。在 NIO 库,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的;在写入数据时,也是写入到缓冲区中。任何时候访问 NIO 中的数据,都是通过缓冲区进行操作。

Channel :通道对象,对数据的读取和写入要通过 Channel,它就像水管一样。通道不同于流的地方就是通道是双向的,可以用于读、写和同时读写操作。Channel 不会直接处理字节数据,而是通过 Buffer 对象来处理数据。

Selector: :多路复用器,选择器。提供选择已经就绪的任务的能力。Selector会不断 轮询注册在其上的 Channel,如果某个 Channel 上面发生读或者写事件,这个 Channel 就处于就绪状态,会被 Selector 轮询出来,进行后续的 I/O 操作。这样服务器只需要一两个线程就可以进行多客户端通信。
3. AIO (异步, 非阻塞)

图解:

在这里插入图片描述
1:客户端通过ip和端口找到服务器端,操作系统内核先处理
2:操作系统内核通知Selector,有客户端请求连接
3:Selector向内核注册连接建立的监听
4:内核发现有人能处理这个连接,于是开始和客户端建立连接
5:连接成功,通知Selector,同时创建channel
6:Selector没有立马去读数据,而是注册读数据的监听
7:客户端发送数据,在内核中缓存。
8:内核通知Selector有数据流。
9:Selector通过channel读取数据。

内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
【源码免费下载链接】:https://renmaiwang.cn/s/bu4rv 在MATLAB中,散点图是一种非常常用的可视化工具,它能够帮助我们理解两个或多个变量之间的关系。散点图通过在二维平面上用点的位置来表示数据,其中x轴和y轴分别代表不同的变量,点的位置则对应着数据点在两个变量上的值。这种图表在数据分析、科学研究以及工程应用中都有着广泛的应用。标题"liwei.zip_matlab散点图_matlab画散点_matlab画散点图_散点图"表明这个压缩包包含了与使用MATLAB绘制散点图相关的资源。可能包含一个MATLAB脚本文件(liwei.m)和一个图像文件(B.jpg),前者是用于创建散点图的代码,后者可能是运行脚本后生成的示例散点图。描述中的"画多张散点图,虽然简单点,但很实用啊,希望对大家能有帮助,哈哈"暗示了这个MATLAB脚本可能不仅展示了如何绘制单个散点图,还可能涉及如何生成多个散点图或者在一个图形窗口内绘制多组数据。这样的功能对于比较不同数据集或展示变量间复杂关系非常有用。在MATLAB中,绘制散点图的基本命令是`scatter`。例如,如果我们有两个向量`x`和`y`,我们可以用以下代码创建一个简单的散点图:```matlabx = 1:10; % 创建一个1到10的向量y = x.^2; % y的值为x的平方scatter(x, y); % 绘制散点图````scatter`函数可以接受额外的参数,比如颜色、大小和标记样式,以定制散点的外观。例如,我们可以为不同的数据集使用不同的颜色:```matlabx1 = 1:5;y1 = x1.^2;x2 = 6:10;y2 = x2.^3;colors = {r, b}; % 设置两种颜色scatter(x1, y1, r); % 绘制第一组数据,红色hold on; % 保持当前图形,允许在同一图上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值