Datawhale学习笔记-飞桨AI-Task01:先导课:你想被AI替代,还是成为AI的创造者?

Task01:先导课:你想被AI替代,还是成为AI的创造者?

 先回答一下问题,我想创造可以替代自己的AI(bushi)

计算机的发展史:越来越小,越来越快

 这里正好归纳一下最近预习的计算机组成原理网课第二章:计算机发展主要取决于电子技术的发展和计算机体系结构技术的发展。英特尔曾经的董事长Gordon Moore在一篇《让集成电路添满更多的元件》观察报告中提出Moore定律——每个新芯片大体上包含其前任两倍的容量,每个芯片的产生都是在前一个芯片产生后的18-24个月内。计算能力相对于时间周期将呈指数式的上升。
 

人工智能发展史:


Atificial Intelligence(1950)
Machine Learning(1980)
Deep Learning(2010)
 想起了1956年的Dartmouth Conferences,人工智能概念由此产生。机器学习是实现人工智能的一种技术,而深度学习是实现机器学习的一种技术。我们目前实现了弱人工智能,正在向强人工智能迈进。
 补充一下最近读机器学习书看到的背景:在图像识别、语音识别、自然语言处理等领域里重点问题的特定测试数据集上,深度学习算法已经接近或超越人类的水平达到接近实用的标准。在语音识别、人脸识别、OCR(光学字符识别)、自动驾驶、医学图像识别与疾病诊断等众多商业领域,深度学习和人工智能技术正在带来产业变革。

为什么开设本课程?

1.AI即将取代多数工作?

 AI必须由人类来决定其结构、学习目标以及学习方式。

2.AI时代的新职业——AI训练师

 这里联想到了图灵协助盟军破译Enigma的故事,好像大概是根据密码机的弱点(3个转子旋转改变电路,但实际只有一个转子旋转)和密码本的词频弱点(有点像NLP了哈哈)实现破译的,推一下《模仿游戏》这部以此为背景的电影,有卷福哦。

人工智能在各行各业的应用:

 视频剪辑、视频修复、智能驾驶、智能质检、智慧医疗、文本识别、文本生成、智能游戏
 最近打的几次数模比赛做CV比赛,表示每次复现Adobe的小工具都非常麻烦,真好,现在这个年代可以直接用到PS、PR、AE这些工具。

怎么学习人工智能:

编程基础

多跑代码:飞桨、kaggle、github

精读文献:Papers With Code、ReadPaper、xxx University

 这里xxx University安利一下Stanford University的CS 329P : Practical Machine Learning(实用机器学习 2021秋季)的课程。论文精读也是寒假看了李沐大神的课程才有了这个概念,最近在精读的有AlexNet的深度学习奠基作和ResNet的一篇论文。

学会总结:那么我现在就在DataWhale组队学习中总结。

第一次参加DataWhale,下手没轻重,第一天先导课没有什么代码量与思考过程,先根据课程内容简单写写吧,嘻嘻。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值