线性基(处理集合异或的强力工具)

看了好多篇关于线性基的博客,只是说明了怎么求线性基,但是大都没有说明为什么这样求线性基。


定义:

有一个集合 S  = {a1,a2...,an},T的满足下面条件的一个最小子集A = {a1,a2,....,ak}

A的所有子集的异或和的值域与T的所有子集的异或和的值域相同,那么A就是T的线性基。


预备知识:

1、张成:S的所有子集,其异或和的所有可能的结果组成的集合,为S的张成,记作span(S)。


2、线性相关:对于一个集合S,如果存在一个元素Sj,去除这个元素后得到的集合S'的张成span(S')中包含Sj,即SJspan(S'),则称集合S是线性相关的。如果不存在这样的Sj,那么集合S就是线性无关的。


3、线性基:有了上面两个名词,我们还可以这样定义线性基。

    (1)A ⊆ span(S)

    (2)A是线性无关的

则集合A是集合S的线性基。


性质:

1、A是一个集合的线性基,那么它的任何真子集都不可能是线性基;

2、S中所有的向量都可以按唯一的方式表达为 A 中元素的线性组合(也就是异或和)。


构造:

我们令集合中的数为a1,a2,....,an,b[ ]数组用来存储线性基里面的数。(下面的二进制的位数下标从0开始)

第一种情况:找到ai的最高位,假如是第j位,如果b[j]还没有数,即b[j] = 0,那么现在b数组中的数的张成肯定不包含ai,那么我们就可以b[j] = a[i],然后利用已经在线性基里的最高位小于j的把b[j]二进制中的1给消掉,具体就是 b[j] ^= b[k] ( k < j && b[j]的第k位为1 && b[k] != 0) ,然后用同样的方法把大于j的也消掉。

第二种情况:找到ai的最高位,假如是第j位,如果b[j]已经有数,就判断现在线性基的张成span(a1,a2...,ai-1)包不包含ai,如果包含,那么ai就没有必要加进线性基。怎么判断呢,我们如果ai的第j位为1且b[j] != 0,那么我们就把ai的值异或上b[j],依次往后判断,直到ai当前的最高位对应的b[j] == 0,就可以把ai加入线性基,执行上面第一种情况的操作,或者ai为0,就丢掉ai。

代码如下:

void create()
{
    for(int i=1;i<=n;i++)
    {
        for(int j=60;j>=0;j--)
        {
            if((1LL<<j)&a[i])
            {
                if(b[j] != 0)
                    a[i] ^= b[j];
                else
                {
                    b[j] = a[i];
                    for(int k=j-1;k>=0;k--)
                        if(((1LL<<k)&b[j]) && b[k])
                            b[j] ^= b[k];
                    for(int k=j+1;k<=60;k++)
                        if(((1LL<<j)&b[k]))
                            b[k] ^= b[j];
                    break;
                }
            }
        }
    }
}

这段代码是维护一个对角矩阵,加入一行之后,先用下面的行消自己,然后再用自己去消上面的行。

我们来演示一下这个过程:

加入n = 5,a = {7,1,3,4,5}

初始矩阵: 

                            0 0 0 

                            0 0 0

                            0 0 0

插入7之后:

                            1 1 1

                            0 0 0 

                            0 0 0 

插入3之后,为了维护对角矩阵,把7的低位消掉:

                            1 0 0

                            0 1 1 

                            0 0 0

插入1之后,把1上面的行的低位都消掉:

                            1 0 0 

                            0 1 0

                            0 0 1

然后就发现后面那几个数都已经包含在b数组的张成里了,加不进去了。


上述过程是把线性基维护成一个对角矩阵,其实我们还有一种代码量比较少的线性基的构造方法,就是只把矩阵消成上三角矩阵,这样的话同样可以知道哪一位存在于线性基内。


线性基的操作:

我们把线性基封装成一个结构体,这样使用起来方便一点:

struct LineBasis
{
    LL b[66];
    LL p[66];
    int cnt;
    int max_b = 62;
    LineBasis()
    {
        memset(b,0,sizeof(b));
        memset(p,0,sizeof(p));
        cnt = 0;
    }
}

这里的b数组就是用于存线性基里的数,这个cnt是记录线性基里面有多少个数。

那么这个cnt有什么作用呢,2的cnt次幂就是这个线性基所有子集异或和能构成的不同元素的个数(这里包括零)。

max_b是最大那个数二进制的长度

下面介绍他的各个函数:

1、插入

上面虽然展示了一种线性基的构造方法,那个方法可以提现出线性基的性质,但是下面我们用它比较方便的写法:

    bool Insert(LL val)
    {
        for(int i=max_b;i>=0;i--)
        {
            if((1LL<<i)&val)
            {
                if(b[i] == 0)
                {
                    b[i] = val;
                    break;
                }
                val ^= b[i];
            }
        }
        if(val > 0)
            cnt++;
        return val > 0;
    }



2、合并:

把一个线性基里的元素一个一个的Insert到另一个里面,就完成了合并。

    LineBasis Merge(LineBasis n1,LineBasis n2)
    {
        LineBasis ret = n1;
        for(int i=0;i<=max_b;i++)
            if(n2.b[i])
                ret.Insert(n2.b[i]);
        return ret;
    }


线性基的用途:

1、求一组数所有组合能构成的不同异或和的个数:

求出这组数的线性基,线性基里数的个数为cnt,答案就为2的cnt次幂

hihocoder1723 子树统计


2、存在性:

查询x是否存在于异或集合中,跟上面构造方法的思想相似,从高位到低位扫描x位1的二进制位,扫到第i位时,x ^= b[i],如果最后x变为0,则存在,否则不存在。


3、最大值:

求异或集合中的最大值

如果消成对角矩阵的话,直接把线性基中的所有元素异或起来即可。但是对于上三角矩阵,异或之前判断一下是否能变大。

还可以求一个数x与集合中某些数异或的最大值,只用把初值设为x就行了,单纯求最大值时最初始值设为0.

    LL QueryMax(LL x)
    {
        LL ans = x;
        for(int i=max_b;i>=0;i--)
            if((ans^b[i]) > ans)
                ans ^= b[i];
        return ans;
    }


4、最小值:

最小值就是最低位上的线性基。

    LL QueryMin()
    {
        for(int i=0;i<=max_b;i++)
            if(b[i])
                return b[i];
        return 0;
    }


5、k小值

这时候用构造出的上三角矩阵就不能解决这个问题了,我们要把上三角矩阵变换成对角矩阵,然后再把不为零的都按顺序拿出来。这时候矩阵已经变成对角矩阵(至少是行最简形矩阵),我们异或上某一行的值,答案就会变大一点。我们可以想象,从一个数组 a = {8,4,2,1}中选出几个,求能组成第k小的值是多少,利用二进制的性质,如果k的二进制第i位为1,我们就加上数组里第i大的数。这里的异或上一个值也会变大一点,所以可以用同样的思想。具体看下面代码

    void rebuild()
    {
        for(int i=max_b;i>=0;i--)
            for(int j=i-1;j>=0;j--)
                if(b[i]&(1LL<<j))
                    b[i] ^= b[j];
        cnt = 0;
        for(int i=0;i<=max_b;i++)
            if(b[i])
                p[cnt++] = b[i];
    }
    LL kthquery(LL k)
    {
        LL ans = 0;
        if(k>=(1LL<<cnt))
            return -1;
        for(int i=max_b;i>=0;i--)
            if(k&(1LL<<i))
                ans ^= p[i];
        return ans;
    }



总的模板:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long


using namespace std;



struct LineBasis
{
    LL b[66];
    LL p[66];
    int cnt;
    int max_b = 62;
    LineBasis()
    {
        memset(b,0,sizeof(b));
        memset(p,0,sizeof(p));
        cnt = 0;
    }
    bool Insert(LL val)
    {
        for(int i=max_b;i>=0;i--)
        {
            if((1LL<<i)&val)
            {
                if(b[i] == 0)
                {
                    b[i] = val;
                    break;
                }
                val ^= b[i];
            }
        }
        if(val > 0)
            cnt++;
        return val > 0;
    }
    LineBasis Merge(LineBasis n1,LineBasis n2)
    {
        LineBasis ret = n1;
        for(int i=0;i<=max_b;i++)
            if(n2.b[i])
                ret.Insert(n2.b[i]);
        return ret;
    }
    LL QueryMax(LL x)
    {
        LL ans = x;
        for(int i=max_b;i>=0;i--)
            if((ans^b[i]) > ans)
                ans ^= b[i];
        return ans;
    }
    LL QueryMin()
    {
        for(int i=0;i<=max_b;i++)
            if(b[i])
                return b[i];
        return 0;
    }
    void rebuild()
    {
        for(int i=max_b;i>=0;i--)
            for(int j=i-1;j>=0;j--)
                if(b[i]&(1LL<<j))
                    b[i] ^= b[j];
        cnt = 0;
        for(int i=0;i<=max_b;i++)
            if(b[i])
                p[cnt++] = b[i];
    }
    LL kthquery(LL k)
    {
        LL ans = 0;
        if(k>=(1LL<<cnt))
            return -1;
        for(int i=max_b;i>=0;i--)
            if(k&(1LL<<i))
                ans ^= p[i];
        return ans;
    }
};


int a[11000];
int main(void)
{
    int n,i,j;
    LineBasis s;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        s.Insert(a[i]);
    }


    return 0;
}


/*
5
7 1 4 3 5
*/



如有错误,欢迎指出。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性可以用来判断原集合是否封闭。如果一个元素能够被线性向量线性表示,那么它就可以由原集合中的元素经过线性组合得到,即原集合是封闭的。否则,如果有一个元素不能被线性向量线性表示,那么它就无法由原集合中的元素经过线性组合得到,即原集合不是封闭的。 具体地,我们可以通过将待判断的元素与线性向量进行或操作来判断是否能够线性表示。如果待判断元素与线性向量进行或操作后得到零向量,则说明待判断元素可以由线性向量线性表示。如果待判断元素与线性向量进行或操作后得到非零向量,则说明待判断元素无法由线性向量线性表示。 因此,我们可以通过判断待判断元素与线性向量进行或操作的结果是否为零向量来判断原集合是否封闭。如果待判断元素与线性向量进行或操作后都得到零向量,则原集合是封闭的;否则,原集合不是封闭的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [线性模板](https://blog.csdn.net/weixin_43519854/article/details/96977900)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [【矩阵论】线性空间与线性变换(3)(4)](https://blog.csdn.net/kodoshinichi/article/details/108916238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值