Codeforces Round #479 F. Consecutive Subsequence(DP)

You are given an integer array of length nn.

You have to choose some subsequence of this array of maximum length such that this subsequence forms a increasing sequence of consecutive integers. In other words the required sequence should be equal to [x,x+1,,x+k1][x,x+1,…,x+k−1] for some value xx and length kk.

Subsequence of an array can be obtained by erasing some (possibly zero) elements from the array. You can erase any elements, not necessarily going successively. The remaining elements preserve their order. For example, for the array [5,3,1,2,4][5,3,1,2,4] the following arrays are subsequences: [3][3][5,3,1,2,4][5,3,1,2,4][5,1,4][5,1,4], but the array [1,3][1,3] is not.

Input

The first line of the input containing integer number nn (1n21051≤n≤2⋅105) — the length of the array. The second line of the input containing nn integer numbers a1,a2,,ana1,a2,…,an (1ai1091≤ai≤109) — the array itself.

Output

On the first line print kk — the maximum length of the subsequence of the given array that forms an increasing sequence of consecutive integers.

On the second line print the sequence of the indices of the any maximum length subsequence of the given array that forms an increasing sequence of consecutive integers.

Examples
input
Copy
7
3 3 4 7 5 6 8
output
Copy
4
2 3 5 6 
input
Copy
6
1 3 5 2 4 6
output
Copy
2
1 4 
input
Copy
4
10 9 8 7
output
Copy
1
1 
input
Copy
9
6 7 8 3 4 5 9 10 11
output
Copy
6
1 2 3 7 8 9 

#include<map>
#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long

using namespace std;

map<int,int> dp;
stack<int> s;
int a[200010];

int main(void)
{
    int n,i,j;
    while(scanf("%d",&n)==1)
    {
        dp.clear();
        int ans = 0;
        int x;
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            dp[a[i]] = dp[a[i]-1] + 1;
            if(dp[a[i]] > ans)
            {
                ans = dp[a[i]];
                x = a[i];
            }
        }
        printf("%d\n",ans);
        for(i=n;i>=1;i--)
        {
            if(a[i] == x)
            {
                s.push(i);
                x--;
                ans--;
                if(ans == 0)
                    break;
            }
        }
        while(!s.empty())
        {
            printf("%d ",s.top());
            s.pop();
        }
        printf("\n");
    }
    return 0;
}

题意:从n个数中找出一个最长的子序列,要求后一个数是前一个数加1。

思路:这是一个非常有意思的DP,dp[i]表示以数字i结尾最长的子序列的长度,那么它可以由dp[i-1]转移过来,但是看题目的ai的范围是1e9,所以我们选择用map去存dp数组,最后还要求输出子序列,我们只用记录一下选出子序列的最后一个数字是什么,比如是x,那么它的长度就是dp[x],那么我们从后往前遍历一遍数组,用栈去存一下下标,就可以了。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值