【题解】最长公共子序列(DP)

题面

【题目描述】
一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列 X = X= X= { x 1 , x 2 , … , x m x_1, x_2,…, x_m x1,x2,,xm},则另一序列 Z = Z= Z= { z 1 , z 2 , … , z k z_1, z_2,…, z_k z1,z2,,zk}是 X X X的子序列是指存在一个严格递增的下标序列 { i 1 , i 2 , … , i k i_1, i_2,…, i_k i1,i2,,ik },使得对于所有 j = 1 , 2 , … , k j=1,2,…,k j=1,2,,k X i j = Z j X_{i_j}=Z_j Xij=Zj
例如,序列 Z = Z= Z={ B , C , D , B B,C,D,B B,C,D,B}是序列 X = X= X={ A , B , C , B , D , A , B A,B,C,B,D,A,B A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{ 2 , 3 , 5 , 7 2,3,5,7 2,3,5,7}。给定两个序列 X X X Y Y Y,当另一序列 Z Z Z既是 X X X的子序列又是 Y Y Y的子序列时,称 Z Z Z是序列 X X X Y Y Y的公共子序列。例如,若$X= ${ A , B , C , B , D , A , B A, B, C, B, D, A, B A,B,C,B,D,A,B}和 Y = Y= Y= { B , D , C , A , B , A B, D, C, A, B, A B,D,C,A,B,A},则序列{ B , C , A B,C,A B,C,A}是 X X X Y Y Y的一个公共子序列,序列{ B , C , B , A B,C,B,A B,C,B,A}也是 X X X Y Y Y的一个公共子序列。而且,后者是 X X X Y Y Y的一个最长公共子序列,因为 X X X Y Y Y没有长度大于 4 4 4的公共子序列。给定两个序列 X = X= X= { x 1 , x 2 , … , x m x_1, x_2, …, x_m x1,x2,,xm}和 Y = Y= Y= { y 1 , y 2 , … , y n y_1, y_2, … , y_n y1,y2,,yn},要求找出 X X X Y Y Y的一个最长公共子序列。
【输入】
输入共两行。每行为一个由大写字母构成的长度不超过 200 200 200的字符串,表示序列 X X X Y Y Y
【输出】
输出第一行为一个非负整数。表示所求得的最长公共子序列的长度。若不存在公共子序列,则输出仅有一行输出一个整数 0 0 0
【样例输入】

ABCBDAB
BDCABA

【样例输出】

4

算法分析

状态:
d p [ i ] [ j ] dp[i][j] dp[i][j] : 字符串 S S S i i i 个字符与字符串 T T T j j j 个字符的最长公共子序列的长度。

状态转移方程:
( 1 ) (1) 1S[i]$不在公共子序列中,那么字符串 S S S i i i个 字符与字符串 T T T j j j 个字符的最长公共子序列的长度 = = =字 符串 S S S i − 1 i-1 i1 个字符与字符串 T T T j j j 个字符的最长公共子序列的长度:
d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j] dp[i][j]=dp[i1][j]

( 2 ) (2) 2 T [ j ] T[j] T[j] 不在公共子序列中,那么字符串 S S S i i i个 字符与字符串 T T T j j j 个字符的最长公共子序列的长度 = = =字 符串 S S S i i i 个字符与字符串 T T T j − 1 j-1 j1 个字符的最长公共子序列的长度:
d p [ i ] [ j ] = d p [ i ] [ j − 1 ] dp[i][j]=dp[i][j-1] dp[i][j]=dp[i][j1]

( 3 ) (3) 3 S [ i ] = T [ j ] S[i]=T[j] S[i]=T[j],将 S [ i ] 与 T [ j ] S[i] 与T[j ] S[i]T[j]加入到公共子序列中,那么字符串 S S S i i i个 字符与字符串 T T T j j j 个字符的最长公共子序列的长度 = = =字 符串 S S S i i i 个字符与字符串 T T T j − 1 j-1 j1 个字符的最长公共子序列的长度 + 1 +1 +1
d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j]=dp[i-1][j-1]+1 dp[i][j]=dp[i1][j1]+1
最后取一个最大值。

边界条件
d p [ i ] [ 0 ] = 0 dp[i][0]=0 dp[i][0]=0,字符串 S S S i i i个 字符与字符串 T T T 0 0 0 个字符的最长公共子序列的长度为0。
d p [ 0 ] [ j ] = 0 dp[0][j]=0 dp[0][j]=0,字符串 S S S 0 0 0个 字符与字符串 T T T j j j 个字符的最长公共子序列的长度为0。
定义时,默认为0,就不需要初始化。

参考程序

有两种写法:
1. 1. 1.字符串下标0开始,为了避免i-1,j-1越界,需要分类讨论:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[1100][1100],ans;
char a[1100],b[1100]; 
int main()
{
    gets(a);
    gets(b);
    int lena=strlen(a);
    int lenb=strlen(b);
    for(int i=0;i<lena;i++)
        for(int j=0;j<lenb;j++)
        {
            if(i==0&&j==0)
            {
                if(a[0]==b[0]) dp[0][0]=1;
                else dp[0][0]=0;
            }
            else if(i==0)
            {
                if(a[0]==b[j]) dp[0][j]=1;
                else dp[0][j]=max(dp[0][j],dp[0][j-1]); 
            } 
            else if(j==0)
            {
                if(a[i]==b[0]) dp[i][0]=1;
                else dp[i][0]=max(dp[i][0],dp[i-1][0]); 
            }
            else
            {
                dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                if(a[i]==b[j]) dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
            }
        }
    cout<<dp[lena-1][lenb-1]<<endl;
    return 0;
}

2. 2. 2.字符串下标1开始:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[1100][1100],ans;
char a1[1100],b1[1100],a[1100],b[1100]; 
int main()
{
    gets(a1);
    gets(b1);
    int lena=strlen(a1);
    int lenb=strlen(b1);
    for(int i=1;i<=lena;i++)
        a[i]=a1[i-1];
    for(int i=1;i<=lenb;i++)
        b[i]=b1[i-1];
    for(int i=1;i<=lena;i++)
        for(int j=1;j<=lenb;j++)
        {
            dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            if(a[i]==b[j]) dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
        }
    cout<<dp[lena][lenb]-1<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值