4.寻找两个正序数组的中位数

class Solution {
    /**
      递归O(log(N+M))
      (m + n) / 2就是要求的第k个数就是中位数x
      假设, m, n >= k / 2,先从nums1和nums2各去前面k / 2个元素,
      1. 如果nums1[k/2] < nums2[k/2], nums1[0..k/2]个数肯定小于中位数,不存在第k个数,删除掉。
      剩下 nums1[k/2+1, n] nums2[0..m];
      2.如果nums1[k/2] > nums2[k/2], 同理nums2[0..k/2]个数肯定小于中位数,不存在第k个数,删除掉;
      3.如果nums1[k/2] == nums2[k/2],恰好相等,就是第k个数,根据奇偶个数返回中位数
     */
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int n = nums1.length, m = nums2.length;
        //解决奇偶个数问题
        int left = (n + m + 1) / 2;
        int right = (n + m + 2) / 2;
        return (getK(nums1, 0, nums2, 0, left) + getK(nums1, 0, nums2, 0, right)) /2.;
    }
    //A短  B长
    private int getK(int[] A, int i, int[] B, int j, int k) {
       if(A.length - i > B.length - j) return getK(B, j, A, i, k);
       if(k == 1) {
           if(i == A.length) return B[j];
           else return Math.min(A[i], B[j]);
       }
       if(i == A.length) return B[j + k - 1];
       int si = Math.min(A.length, i + k / 2), sj = j + k - k / 2;
       if(A[si - 1] > B[sj - 1]) {
           return getK(A, i, B, sj, k - (sj - j));
       }else {
           return getK(A, si, B, j, k - (si - i));
       }

    }
    private int getK2(int[] A, int aStart, int[] B, int bStart, int k) {
        if(aStart > A.length - 1) return B[bStart + k - 1];
        if(bStart > B.length - 1) return A[aStart + k - 1];
        if(k == 1) return Math.min(A[aStart], B[bStart]);
        int aMin = (aStart + k / 2 - 1 < A.length)? A[aStart + k / 2 - 1] : Integer.MAX_VALUE;
        int bMin = (bStart + k / 2 - 1 < B.length)? B[bStart + k / 2 - 1] : Integer.MAX_VALUE;
        if(aMin < bMin) {
            //去掉aStart..aStart+ k / 2 - 1数
            return getK(A, aStart + k / 2, B, bStart, k - k / 2);
        }else {
            //去掉 bStart..bStart + k / 2 - 1数
            return getK(A, aStart, B, bStart + k / 2, k - k / 2);
        }
    }
}

寻找两个正序数组中位数可以使用归并的方式,合并两个有序数组,得到一个大的有序数组。然后找到大的有序数组的中间位置的元素,即为中位数。另一种方法是使用双指针的方式,维护两个指针,初始时分别指向两个数组的下标0的位置。每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。这样可以在O(log(m+n))的时间复杂度内找到中位数。 具体步骤如下: 1. 初始化指针p1和p2分别指向两个数组的起始位置0。 2. 判断两个指针所指的元素大小,较小的元素所在的指针后移一位,直到其中一个指针到达数组末尾。 3. 若两个数组的长度之和为奇数,那么中位数即为当前指针指向的元素; 若两个数组的长度之和为偶数,那么中位数为当前指针指向的元素与其下一个元素的平均值。 4. 返回中位数作为结果。 需要注意的是,为了保证时间复杂度为O(log(m+n)),在每次移动指针时,应该移动的步数应该是当前指针所在数组长度的一半,即k/2,其中k为两个数组的长度之和。 以下是一个示例代码,用于说明上述方法的实现: ``` int findMedianSortedArrays(int[] nums1, int[] nums2) { int m = nums1.length; int n = nums2.length; int total = m + n; int middle = total / 2; int p1 = 0, p2 = 0; int prev = 0, curr = 0; for (int i = 0; i <= middle; i++) { prev = curr; if (p1 < m && (p2 >= n || nums1[p1 < nums2[p2])) { curr = nums1[p1++]; } else { curr = nums2[p2++]; } } if (total % 2 == 0) { return (prev + curr) / 2; } else { return curr; } } ``` 该方法可以在O(log(m+n))的时间复杂度内找到两个正序数组中位数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [算法寻找两个正序数组中位数。](https://blog.csdn.net/en_joker/article/details/107179641)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [寻找两个正序数组中位数](https://blog.csdn.net/wulila/article/details/124483500)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值