算法功能
康拓展开用于解决:给定一个值为 1 1 1 ~ n n n的,数字互不重复的,且长度为 n n n的排序序列,康拓展开可以计算出 1 1 1 ~ n n n的全排列按照字典序排列,给定排列是第多少个。
算法公式
x
=
p
1
⋅
(
n
−
1
)
!
+
p
2
⋅
(
n
−
2
)
!
+
…
+
p
n
⋅
0
!
x=p_1 \cdot (n-1)!+p_{2} \cdot (n-2)!+\ldots+p_n \cdot 0!
x=p1⋅(n−1)!+p2⋅(n−2)!+…+pn⋅0!
x
x
x指的是当前给定的排列序列,
p
i
p_i
pi指的是第
i
+
1
i+1
i+1 ~
n
n
n个值中,比排列序列中第
i
i
i个值小的元素的数量。
算法过程
比如说有一个序列
52413
52413
52413。
首先先从
a
1
a_1
a1开始,值为
5
5
5,后面分别有
2
2
2、
4
4
4、
1
1
1、
3
3
3,都比
5
5
5小,所以
p
1
p_1
p1的值为
4
4
4,那么当前
x
x
x就是
4
∗
4
!
=
96
4*4!=96
4∗4!=96。
接着到了
a
2
a_2
a2,值为
2
2
2,后面只有一个
1
1
1比他小,所以
p
2
p_2
p2的值就是
1
1
1,那么当前的
x
x
x就是
96
+
1
∗
3
!
=
102
96+1*3!=102
96+1∗3!=102。
然后就是
a
3
a_3
a3,值为
4
4
4,后面的
1
1
1和
3
3
3都比他小,那么
p
3
p_3
p3就是
2
2
2,当前的
x
x
x就是
102
+
2
∗
2
!
=
106
102+2*2!=106
102+2∗2!=106。
最后是
a
4
a_4
a4,值是
1
1
1,后面没有比他小的,所以贡献为
0
0
0。
那么52413是不是全排列的第
106
106
106个呢?不是。
比如我们有一个序列12345。
因为这是一个单调上升的序列,所以
p
i
p_i
pi的值都是
0
0
0,所以最后的
x
x
x就是
0
0
0。
所以,最后这个序列的排名就是康拓展开后
x
+
1
x+1
x+1。
算法分析
还是上面那个序列:
52413
52413
52413
先看
5
5
5,以
5
5
5开头的序列
52413
52413
52413,可以知道以
4
4
4,
3
3
3,
2
2
2,
1
1
1开头的序列字典序都比这个序列小,后面的四个元素都可以任意组合,如:以
4
4
4开头时,
5
5
5,
3
3
3,
2
2
2,
1
1
1可以在其之后任意排列,这
4
4
4个数共有
4
!
4!
4!种排列方式,而由于
4
4
4,
3
3
3,
2
2
2,
1
1
1这
4
4
4个数开头时都比
52413
52413
52413字典序小,所以以
5
5
5开头时就会有
4
∗
4
!
4*4!
4∗4!种排列字典序更小。
接着是
2
2
2,
2
2
2作第二位时,只有
1
1
1作第二位才会更小,所以这种情况就有
1
∗
3
!
1*3!
1∗3!种排列字典序更小。
……
剩下的数位同理。
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e6+5;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
void print(int x){
if(x<0)putchar('-'),x=-x;
if(x<10){putchar(x+'0');return;}
print(x/10);
putchar(x%10+'0');
}
int n;
int a[N];
int f[N]={1};
signed main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read(),f[i]=f[i-1]*i;
int ans=0;
for(int i=1;i<=n;i++){
int res=0;
for(int j=i+1;j<=n;j++)
if(a[j]<a[i])res++;
ans+=res*f[n-i];
}
print(ans+1);
}
但是,这样做的时间复杂度是
O
(
n
2
)
O(n^2)
O(n2),我们还需要优化。
可以考虑用树状数组,将数组倒过来算。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e6+5;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
void print(int x){
if(x<0)putchar('-'),x=-x;
if(x<10){putchar(x+'0');return;}
print(x/10);
putchar(x%10+'0');
}
int n;
int a[N];
int bit[N];
void update(int x,int p){
while(x<=n){
bit[x]+=p;
x+=x&-x;
}
}
int query(int x){
int res=0;
while(x){
res+=bit[x];
x-=x&-x;
}
return res;
}
int f[N]={1};
signed main(){
n=read();
for(int i=1;i<=n;i++)a[n-i+1]=read();
for(int i=1;i<n;i++)f[i]=f[i-1]*i;
int ans=0;
for(int i=1;i<=n;i++){
int res=query(a[i]-1);
ans+=f[i-1]*res;
update(a[i],1);
}
print(ans+1);
}
时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)
例题
P5367 【模板】康托展开
注意要用树状数组优化时间复杂度,在树状数组里面记得取模。
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e6+5;
const int mod=998244353;
int read(){
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
void print(int x){
if(x<0)putchar('-'),x=-x;
if(x<10){putchar(x+'0');return;}
print(x/10);
putchar(x%10+'0');
}
int n;
int a[N];
int bit[N];
void update(int x,int p){
while(x<=n){
bit[x]+=p;
x+=x&-x;
}
}
int query(int x){
int res=0;
while(x){
res=(res+bit[x])%mod;
x-=x&-x;
}
return res;
}
int f[N]={1};
signed main(){
n=read();
for(int i=1;i<=n;i++)a[n-i+1]=read();
for(int i=1;i<n;i++)f[i]=f[i-1]*i%mod;
int ans=0;
for(int i=1;i<=n;i++){
int res=query(a[i]-1);
ans=(ans+f[i-1]*res%mod)%mod;
update(a[i],1);
}
print(ans+1);
}