自然语言处理之hmm(隐马尔可夫模型)

自然语言处理

Part 3 hmm(隐马尔可夫模型)



前言

作为因为科研需要刚开始接触机器学习、深度学习的菜鸟,看了关于某些算法大神的解释仍是似懂非懂,特在此记录学习过程,争取通俗易懂。


隐马尔科夫模型

为了便于理解,全文以实例贯穿。
假设我们有3个盒子,每个盒子里都有红色和白色两种球,这三个盒子里球的数量分别是:

盒子 1 2 3
红球数 5 4 7
白球数 5 6 3

按照下面的方法从盒子里抽球,开始的时候,从第一个盒子抽球的概率是0.2,从第二个盒子抽球的概率是0.4,从第三个盒子抽球的概率是0.4。以这个概率抽一次球后,将球放回。然后从当前盒子转移到下一个盒子进行抽球。规则是:如果当前抽球的盒子是第一个盒子,则以0.5的概率仍然留在第一个盒子继续抽球,以0.2的概率去第二个盒子抽球,以0.3的概率去第三个盒子抽球。如果当前抽球的盒子是第二个盒子,则以0.5的概率仍然留在第二个盒子继续抽球,以0.3的概率去第一个盒子抽球,以0.2的概率去第三个盒子抽球。如果当前抽球的盒子是第三个盒子,则以0.5的概率仍然留在第三个盒子继续抽球,以0.2的概率去第一个盒子抽球,以0.3的概率去第二个盒子抽球。


一、基本定义

  1. Q是所有可能的隐藏状态的集合:Q={盒子1,盒子2,盒子3}
  2. V是所有可能的观测状态的集合:V={红,白}
  3. N是可能的隐藏状态数:N=3
  4. M是所有的可能的观察状态数:M=2
  5. I 对应的状态序列
  6. O是对应的观察序列
  7. T是序列长度
  8. Π为初始状态分布:Π= ( 0.2 , 0.4 , 0.4 ) T (0.2,0.4,0.4)^\mathrm{T} (0.2,0.4,0.4)T

二、两个重要假设

  1. 齐次马尔科夫链假设。即任意时刻的隐藏状态只依赖于它前一个隐藏状态,上述示例可表示为(状态转移概率分布矩阵a):
盒子1 盒子2 盒子3
盒子1 0.5 0.2 0.3
盒子2 0.3 0.5 0.2
盒子3 0.2 0.3 0.5

a = [ 0.5 0.2 0.3 0.3 0.5 0.2 0.2 0.3 0.5 ] (1) a=\left[ \begin{matrix} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{matrix} \right] \tag{1} a=0.5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值