1.1传输线方程及其通解
下图为双导线的集总电路模型:
在一个微分段内(),双导线可以等效集总电路模型。
的模型怎么来的?=>双导线的射频效应:
导体损耗(趋肤效应)——单位长度串联电阻R0
介质损耗(两根导线之间有介质,如空气)——单位长度并联电导G0
电感效应——单位长度串联电感L0
电容效应——单位长度并联电容C0
根据基尔霍夫定律,微分段上电压差和电流差满足:
令 ->0 ,则
->0,
->0,则有传输线方程(电报方程):
在频域,设时间因子为,
,代入上式得频域电报方程:
上式中将第一个方程的两侧对z再求偏导数,方程右侧出现,将第二个方程带入;第二个方程同样如此(进行去耦合),得到频域波动方程:
注:观察电报方程,可以看到方程为电压对位置的关系与电流对时间的关系的相互转化,电流对位置的关系与电压与时间的关系的相互转转化,高频时传输线上传递的是波。
解频域波动方程(二阶常微分齐次方程):
带入频域电报方程得:
其中:
传输线的特性阻抗:
传输线的传播常数:
通常设:
为衰减常数,
为相移常数。
无耗时,->0,
->0,则:
Zc为常数,为虚数
对于传输线的解:
下面理解一下物理意义,解中包含和
。考虑时间因子
,解为:
当常数(此时为等相位面),即:
,表示t1时刻z1地点的场在t2时刻z2地点又出现了->波的特性,而且波速可以表示为:
把常数的两边对t求导,得到:
同理,常数时,波速为:
因此,可以得到:
说明 表示沿正z方向以
速度传输的波。通常称为入射波或正向波。
反映了波的等相位面传播的速度,所以也称为波的相速度。
同理,表示沿负z方向以
传播的波。通常称之为反射波或反向波。
结论:
:沿正z向传播但振幅衰减的波。
:沿负z向传播但振幅衰减的波
传输线上的电压是入射波和反射波电压之和:
传输线上的电流是入射波和反射波电流之和:
各参数物理意义:
的物理意义:
入射波电压与入射波电流之比。(令U0+=0或者U0-=0)
的物理意义:波振幅的衰减常数
的物理意义:波相移常数
波长的定义:等相位面在一个周期内沿纵向移动的距离
即:
因此,相移因子可以写为:
称为电长度,
称为相移角度
因此,传播特性只与电长度有关
当电长度很短时,即频率很低(波长很长)或线长度很短,线上的波动性很弱。
把电长度长的传输线称为长线,反之为短线。
1.2 无耗传输线的特解
(特解是指在特定边界条件下,传输线上电压电流的解)
对于传输线,通常的边界条件有:终端条件(接负载)、源端条件和电源(接电源)、阻抗条件。
ZL:负载(Load)
Eg:电源(generator)
z:正方向
z':反方向
l:线的长度
1.终端边界条件
已知:,且为无耗传输线(
=0)
带入通解:
得到:
将上式带入通解中:
坐标变换: 和 欧拉公式得到:
上式的矩阵形式:
在源端时,z’=l,此时矩阵为:
其中: ,且可以看出,上述源端的电压电流和负载端的电压电流的关系
注:已知源端电压电流,可求出线上任意一点的电压电流
2.源端边界条件
已知:
上式等号两侧的左端乘以矩阵的逆得到:
3.电源、阻抗条件
已知: 注:目的是求出U0+和U0-
由基尔霍夫定律:
由于:
把 z = 0 带入得到:
把带入到
得到:
两边同除 :
其中,为源端反射系数
同理,考虑终端条件(z=l):
解得:
移项得:
其中,为负载端反射系数
由上述推导,可以解得:
将上式带入
得到特解:
下面讨论反射系数。
线上任一点往负载看去得反射系数定义为:
注:为反射波电压除入射波电压
其中:
为负载端的入射波电压
为负载端的反射波电压
进行坐标变换:
因此:
其中,为负载反射系数
于是,距离负载l 处的反射系数为
,且有:
=>无耗传输线上反射系数的模不变;反射系数的相位是2倍的
注:反射系数为反射波和入射波之比,走的路径为两倍
引入反射系数概念后,电压、电流可表示为:
电压驻波比(voltage standing wave ratio,VSWR):反映负载失配状态的一个量
定义为:
注:为线上电压最大值与电压最小值之比
无反射时,反射系数为0,
全反射时,反射系数为1,
驻波比不可能小于1,
反射系数小于等于1,因为反射波有损耗(无源)
1.3 无耗传输线的阻抗
线上任一点往负载看去的输入阻抗定义为:
则负载阻抗为:
由上式整理得到:
将上式带入到:
得到:
令 :
则:
因此,距离负载l处(z=0,z‘=l)的输入阻抗为:
称为:传输线阻抗公式
tan函数是以为周期的周期函数,因此输入阻抗也是以
为周期
()
因此:
=> 半波长阻抗重复性
又因为:
因此:
1/4波长归一化阻抗倒置性
由上式:
(??????)
1.4 无耗传输线工作状态
1.4.1 行波状态
当时,代入
得:
即匹配时,无反射波(行波状态):
此时电压与电流同相
在时域:
可以得到以下结论:
-> 电压电流振幅沿传输线不变
->相位随线长增加而连续滞后
->阻抗沿线不变,等于特性阻抗
注:行波状态即传输线匹配状态,无反射,是传输系统追求的理想状态。
行波状态如下图:
1.4.2 驻波状态(全反射)
一、短路线
负载端短路, 代入
:
得到:
此时为全反射状态。
对于通解,全反射时
因此:
此时,不是波,U和I与距离无关
在时域:
由:得到:
由 ,
:
看上图,可以得到:
(a)电压电流随时间变化时具有固定的波腹、波节点;波腹波节交替出现,相差
(b)电压与电流相位差90度
(d)(e):
①短路线的输入阻抗为纯电抗:
当 时,呈现感性电抗
当 时,呈现容性电抗
可以使用传输线这种特性来设计射频电路的电抗元件。
②特定长度的短路线会呈现谐振特性:
在当 时,
,呈现并联谐振
在当 时,
, 呈现串联谐振
这种特性使得1/4波长或半波长短路线在射频电路中可以用作谐振器。
二、开路线
负载端短路, 代入
:
得到:
此时为全反射状态。
对于通解,全反射时
因此:
注:根据阻抗的倒置性,开路可看作一段
长的短路线,所以将短路线的驻波曲线沿传输线移动
的距离便可得到开路线的驻波曲线。具体情况如下图直观表示:
三、电抗负载
对于纯电抗负载 ,可得到:
,为全反射状态
同样可以把等效为一段长为
的短路线,
所以,将短路线的驻波曲线沿传输线移动 距离便可以得到端接电抗
时驻波曲线。
1.4.3 行驻波状态(部分反射)
当传输线端接任意阻抗 时,
上式中前一部分为行波分量,后一部分为驻波分量。此时称为行驻波状态。
电压、电流振幅分布:
当,即:
此处为电压振幅的最大值(波腹)
为电流振幅最小值(波节)
当,即
此处为电压振幅的最小值(波节)
为电流振幅最大值(波腹)
下图为电压电流幅值示意图:
结论:
行驻波状态时电压、电流及阻抗的变化特点与驻波状态时类似。实际上,驻波状态是行驻波状态在 的极限状态。
当 (纯电阻负载)时,负载端为电压波节点。(极限情况为短路)
当(纯电阻负载)时,负载端为电压波腹点。(极限情况为开路)
当负载为感性阻抗时,离开负载第一个出现的是电压波腹点、电流波节点。
当负载为容性阻抗时,离开负载第一个出现的是电压波节点、电流波腹点。
在行驻波电压波腹点(也是电流波节点)有:(最大电压除以最小电流)
可以看出:在波腹点,阻抗为实数,且与特性阻抗成正比,比例系数为驻波比。
同理,在电压波节点(电流波腹点)有:
在波节点,阻抗为实数,且与特性阻抗成正比,比例系数为驻波比的倒数。
1.5 无耗传输线的功率
无耗传输线上的输入功率为:
注意:
无耗传输线上任一点的输入功率相同
输入功率等于入射波与反射波功率之差:
上述两点反映了能量守恒。
当 时,
,线上没有反射波,称为匹配。
匹配时,负载吸收全部入射波功率。
匹配时,
当时,
,全反射。
当负载失配时,由于反射波带走功率,负载不能完全吸收入射波功率,形成回波损耗 (Return Loss),定义为
全匹配时,
全反射时,
由于不考虑损耗,无耗传输线上任一点的传输功率相同,可以取线上任意一点的电压和电流计算功率,不过最简单的是在电压腹点或节点处计算,因为该处的阻抗为纯电阻,电压、电流同相。
取电压波腹点,则
取电流波腹点,则
可见,在传输线耐压或所能承载的电流一定的条件下,驻波比越小,传输功率越大,因此,为了求得最大功率容量,传输线系统也总是希望工作在行波状态( ρ=1)。
下面讨论往源端看去的特性:
源端电压:
向源端看去的反射系数:
于是:
源端输入功率:
上式为传输线功率方程。
当负载与源均匹配时(完全匹配),
则有:
,为源最大有用功率,负载也将吸收到最大功率
当负载匹配时,,源失配时,则有:
这说明在源端有部分功率反射,只有有用功率的一部分送到传输线中。
下面讨论源最大功率输出的条件:
考虑:
为了获得最大功率,令
得到:
于是:j即:
,称为共轭匹配
这时源有最大功率输出
1.6 有耗传输线
有耗传输线的解:
其中:,与频率有关的函数。
越靠近源端,反射越小,所以足够长、损耗足够大的传输线对任何负载匹配。
相速为频率的函数,有耗传输线具有色散特性(即传播速度与频率有关)。
当有小损耗时,,则:
所以:,
其中,分别表示导体损耗和介质损耗引起的衰减常数。
可见,小损耗时,特性阻抗和相移常数可以用无耗时的值近似。
衰减常数为导体衰减常数与介质衰减常数之和。
下面讨论传输线效率:
由于传输线总存在一定的损耗,或者负载与传输线间未达到完全匹配,所以电源的功率不可能全部为负载所吸收,这就有传输效率的问题。
传输线效率定义: 负载吸收的功率与传输线上的输入功率之比,以η表示,即
输入功率:
负载吸收的功率为:
则:
可见,当反射系数增加时,
减低;
当,得:
在有耗传输线上,驻波比不是常数。假如
的变化不大,则仍可设
得: