自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 论文记录:面向推荐系统的高效LLM微调方法TALLRec

该文章提出了一种面向推荐任务的LLM指令微调方法。该方法的主要贡献在于构建推荐任务指令数据集,采用高效微调方法Lora,对LLM实现推荐任务的适应,在少样本场景下取得了客观的结果。该方法虽然简介易懂,但也的确是一个大胆尝试。在数据充足、热启动场景下的效果未知。后续多篇文章指出,LLM是一个优秀的冷启动场景的推荐系统,但对于数据充足的场景,性能不佳。对于每个目标商品,TALLRec方法都需要运行一次LLM,才能获得判断结果。当候选商品众多时,推理速度慢,这也是生成式推荐所要解决的问题。

2025-05-27 19:56:51 649

原创 论文记录:GEOLLM大语言模型地理空间知识抽取方法

由图可知,基础提示模板仅输入目标位置的GPS坐标,微调GPT-3.5输出的结果与真实结果相差甚远。相对而言,本文所提出的提示模板包含了目标位置的详细地址信息,以及其邻居位置信息,微调GPT-3.5输出的结果与真实结果相近。阅读该论文后,有以下收获:大语言模型包含地理空间知识,但感觉该种知识仍然体现在语义上,也即地理位置名称所蕴含的知识,而非坐标所反映的距离或位置知识。LLM包含粗粒度的地理空间知识(大范围位置的相关信息,比如城市类型,街道类型),但针对细粒度的地理空间知识还需进一步探索(A与B的距离)。

2025-05-11 09:58:27 289 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除