欧几里得算法。

本文介绍了一个Java程序实现的欧几里得算法来计算最大公约数(GCD),并利用该结果计算两个整数的最小公倍数(LCM)。通过递归方式简化了最大公约数的计算过程,并展示了如何根据最大公约数来快速找到最小公倍数。
摘要由CSDN通过智能技术生成
import java.util.Scanner;

public class Main {  
    
	//欧几里得定理
	public static int gcd(int a,int b){
		if(b==0)return a;
		return gcd(b,a%b);
	}
	
    public static void main(String[] args){
    	System.out.println("8:16 = "+gcd(8,16));
    	System.out.println("8:2 = "+gcd(8,2));
    	
    	System.out.println("8和15的最小公倍数: "+lcm(8,15));
    }  
    
    //最小公倍数定理
    // a = 1*3*7  *5;
    // b = 1*3*7  *6;
    // 最小公倍数的算数定理 质因数分解
    // n  =  p1^n1 * p2^n2 * p3^n3
    // 一个数的质因数分解是唯一的,他的每个质因数有可能出现多次
    //求2个数的最小公倍数就是 ,把两个数相乘后,再去除掉他们共同的质因数
    
    public static int lcm(int a,int b){
    	return a*b/gcd(a,b);
    }
    
    
    
    
    
   
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SUNbrightness

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值