数值示例chap5分布模型

5、分布模型

5.1累计索赔的对数正态模型

假设个体进展因子 F i , j = C i , j / C i , j − 1 F_{i,j}=C_{i,j}\big/C_{i,j-1} Fi,j=Ci,j/Ci,j1服从对数正态分布,则
η i , j = log ⁡ ( F i , j ) ∼ N ( ξ j , σ j 2 ) \eta_{i,j}=\log(F_{i,j})\sim N(\xi_{j},\sigma_{j}^2) ηi,j=log(Fi,j)N(ξj,σj2)
E [ F i , j ] = exp ⁡ { ξ i + 1 2 σ j 2 } E[F_{i,j}]=\exp\left\{\xi_{i}+\frac{1}{2}\sigma_{j}^2\right\} E[Fi,j]=exp{ξi+21σj2}
V a r ( F i , j ) = exp ⁡ { 2 ξ j + σ j 2 } [ exp ⁡ ( σ j 2 ) − 1 ] Var(F_{i,j})=\exp\{2\xi_{j}+\sigma_{j}^2\}\left[\exp\left(\sigma_{j}^2\right)-1\right] Var(Fi,j)=exp{2ξj+σj2}[exp(σj2)1]
链梯模型假设下
E [ C i , j ∣ C i , j − 1 ] = f j − 1 C i , j − 1 {E}[C_{i,j}\mid C_{i,j-1}]={f}_{j-1}C_{i,j-1} E[Ci,jCi,j1]=fj1Ci,j1
故CL进展因子为
f j − 1 = exp ⁡ { ξ i + 1 2 σ j 2 } f_{j-1}=\exp\left\{\xi_{i}+\frac{1}{2}\sigma_{j}^2\right\} fj1=exp{ξi+21σj2}
参数估计

ξ ^ j = 1 I − j + 1 ∑ i = 0 I − j log ⁡ ( C i , j C i , j − 1 ) \hat \xi_{j}=\frac{1}{I-j+1}\sum_{i=0}^{I-j}\log\left(\frac{C_{i,j}}{C_{i,j-1}}\right) ξ^j=Ij+11i=0Ijlog(Ci,j1Ci,j)
σ j 2 ^ = 1 I − j ∑ i = 0 I − j ( log ⁡ ( C i , j C i , j − 1 ) − ξ ^ j ) 2 \hat{\sigma_{j}^2}=\frac{1}{I-j}\sum_{i=0}^{I-j}\left(\log\left(\frac{C_{i,j}}{C_{i,j-1}}\right)-\hat \xi_{j}\right)^2 σj2^=Ij1i=0Ij(log(Ci,j1Ci,j)ξ^j)2

5.2方差参数估计与准备金估计

5.2.1方差已知

无偏估计, σ ^ j 2 \hat \sigma_{j}^2 σ^j2已知
定义 Z i , j = log ⁡ ( C i , j ) Z_{i,j}=\log(C_{i,j}) Zi,j=log(Ci,j)

Z i , J = Z i , I − i + ∑ j = I I + 1 J log ⁡ ( C i , j C i , j − 1 ) = Z i , I − i + ∑ j = I − I + 1 J η i , j Z_{i,J}=Z_{i,I-i}+\sum_{j=I_I+1}^{J}\log\left(\frac{C_{i,j}}{C_{i,j-1}}\right)=Z_{i,I-i}+\sum_{j=I-I+1}^{J}\eta_{i,j} Zi,J=Zi,Ii+j=II+1Jlog(Ci,j1Ci,j)=Zi,Ii+j=II+1Jηi,j
因此
Z ^ i , J = E ^ [ Z i , J ∣ D I ] = Z i , I − i + ∑ j = I − i + 1 J ξ ^ j \hat Z_{i,J}=\hat E[Z_{i,J}|D_{I}]=Z_{i,I-i}+\sum_{j=I-i+1}^{J}\hat \xi_{j} Z^i,J=E^[Zi,JDI]=Zi,Ii+j=Ii+1Jξ^j

C ^ i , J L N = E ^ [ C i , J ∣ D I ] = exp ⁡ { Z ^ i , J + 1 2 ∑ j = I − i + 1 J σ j 2 ( 1 − 1 I − j + 1 ) } \hat C_{i,J}^{LN}=\hat E[C_{i,J}|D_{I}]=\exp\left\{\hat Z_{i,J}+\frac{1}{2}\sum_{j=I-i+1}^{J}\sigma_{j}^2\left(1-\frac{1}{I-j+1}\right)\right\} C^i,JLN=E^[Ci,JDI]=expZ^i,J+21j=Ii+1Jσj2(1Ij+11)
单个事故年的MSEP
m ^ s e p C i , J ∣ C i , I − i ( c ^ i , J L N ) = E [ C i , J ∣ C i , I − i ] 2 × ( e x p { ∑ j = I − i + 1 J σ j 2 } − 1 + e x p { ∑ j = I − i + 1 J σ j 2 I − j + 1 } − 1 ) \hat msep_{C_{i,J|C_{i,I-i}}}\left(\hat c_{i,J}^{LN}\right)=E[C_{i,J}\mid C_{i,I-i}]^2 \times\left(exp\left\{\sum_{j=I-i+1}^{J}\sigma_{j}^2\right\}-1+exp\left\{\sum_{j=I-i+1}^{J}\frac {\sigma_{j}^2}{I-j+1}\right\}-1\right) m^sepCi,JCi,Ii(c^i,JLN)=E[Ci,JCi,Ii]2×expj=Ii+1Jσj21+expj=Ii+1JIj+1σj21
过程方差
exp ⁡ { ∑ j = I − i + 1 J σ j 2 } − 1 \exp\left\{\sum_{j=I-i+1}^{J}\sigma_{j}^2\right\}-1 expj=Ii+1Jσj21
参数估计偏差
{ ∑ j = I − i + 1 J σ j 2 I − j + 1 } − 1 \left\{\sum_{j=I-i+1}^{J}\frac {\sigma_{j}^2}{I-j+1}\right\}-1 j=Ii+1JIj+1σj21
MSEP事故年的聚合

m ^ s e p ∑ i C i , j ∣ . ( ∑ i = 1 I C ^ i , J C L ) = ∑ i = 1 I m s e p C i , J ∣ C i , I − i ( C ^ i , J L N ) + 2 ∑ 1 ≤ i &lt; k ≤ I E [ C i , J ∣ C i , I − i ] × E [ C k , J ∣ C k , I − k ] ( e x p { ∑ j = I − i + 1 J σ j 2 I − j + 1 } − 1 ) \hat msep_{\sum{iC_{i,j}|.}}\left(\sum_{i=1}^{I}\hat C_{i,J}^{CL}\right)=\sum_{i=1}^{I}msep_{C_{i,J}\mid C_{i,I-i}}\left(\hat C_{i,J}^{LN}\right)+2\sum_{1\leq i&lt;k\leq I}E[C_{i,J}\mid C_{i,I-i}]\times E[C_{k,J}\mid C_{k,I-k}]\left(exp\left\{\sum_{j=I-i+1}^{J} \frac{\sigma_{j}^2}{I-j+1}\right\}-1\right) m^sepiCi,j.(i=1IC^i,JCL)=i=1ImsepCi,JCi,Ii(C^i,JLN)+21i<kIE[Ci,JCi,Ii]×E[Ck,JCk,Ik]expj=Ii+1JIj+1σj21

中心预测量, σ ^ j 2 \hat \sigma_{j}^2 σ^j2已知

C ^ i , J c p = E ^ [ C i , J ∣ D I ] = exp ⁡ { Z ^ i , J + 1 2 ∑ j = I − i + 1 J σ j 2 ( 1 + 1 I − j + 1 ) } \hat C_{i,J}^{cp}=\hat E[C_{i,J}\mid D_{I}]=\exp\left\{\hat Z_{i,J}+\frac{1}{2}\sum_{j=I-i+1}^{J}\sigma_{j}^2\left(1+\frac{1}{I-j+1}\right)\right\} C^i,Jcp=E^[Ci,JDI]=expZ^i,J+21j=Ii+1Jσj2(1+Ij+11)
= C ^ i , J L N exp ⁡ ( ∑ j = I − i + 1 J σ ^ j 2 I − j + 1 ) &gt; C ^ i , J L N =\hat C_{i,J}^{LN}\exp\left(\sum_{j=I-i+1}^{J}\frac {\hat \sigma_{j}^2}{I-j+1}\right)&gt;\hat C_{i,J}^{LN} =C^i,JLNexpj=Ii+1JIj+1σ^j2>C^i,JLN
MSEP可以由下式估计
m ^ s e p C i , J ∣ C i , I − i ( c ^ i , J c p ) = E [ C i , J ∣ C i , I − i ] 2 × ( exp ⁡ { ∑ j = I − i + 1 J 3 σ j 2 I − i + 1 } + exp ⁡ { ∑ j = I − i + 1 J σ j 2 } − 2 exp ⁡ { ∑ j = I − i + 1 J σ j 2 I − j + 1 } ) \hat msep_{C_{i,J|C_{i,I-i}}}\left(\hat c_{i,J}^{cp}\right)=E[C_{i,J}\mid C_{i,I-i}]^2\times\left(\exp\left\{\sum_{j=I-i+1}^{J}\frac{3\sigma_{j}^2}{I-i+1}\right\}+\exp\left\{\sum_{j=I-i+1}^{J}\sigma_{j}^2\right\}-2\exp\left\{\sum_{j=I-i+1}^{J}\frac {\sigma_{j}^2}{I-j+1}\right\}\right) m^sepCi,JCi,Ii(c^i,Jcp)=E[Ci,JCi,Ii]2×expj=Ii+1JIi+13σj2+expj=Ii+1Jσj22expj=Ii+1JIj+1σj2

5.2.2方差未知

t j ( σ j 2 ) = I − j σ j 2 ( 1 − exp ⁡ { − σ j 2 I − j + 1 } ) t_{j}(\sigma_{j}^2)=\frac{I-j}{\sigma^2_{j}}\left(1-\exp\left\{\frac{-\sigma_{j}^2}{I-j+1}\right\}\right) tj(σj2)=σj2Ij(1exp{Ij+1σj2})
C ^ i , J L N σ , 1 = E ^ [ C i , J ∣ D I ] = exp ⁡ { Z ^ i , J + 1 2 ∑ j = I − j + 1 J } t j ( σ j 2 ) σ ^ j 2 \hat C_{i,J}^{LN\sigma,1}=\hat E[C_{i,J}\mid D_{I}]=\exp\left\{\hat Z_{i,J}+\frac{1}{2}\sum_{j=I-j+1}^{J}\right\}t_{j}(\sigma_{j}^2)\hat \sigma^2_{j} C^i,JLNσ,1=E^[Ci,JDI]=expZ^i,J+21j=Ij+1Jtj(σj2)σ^j2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值