机器学习7.20

本文深入探讨了Logistic回归、有监督与无监督学习、决策树与随机森林、K近邻模型、贝叶斯模型、SVM以及K均值聚类等机器学习与数据挖掘的核心算法。通过实例解析了每个模型的工作原理、应用场景和操作流程,同时介绍了模型评估策略、距离度量方式以及自然语言处理中的NLP技术。此外,还强调了模型选择、参数调优和数据预处理的重要性。
摘要由CSDN通过智能技术生成

昨日内容回顾

  • Logistic回归模型

    对线性回归模型的公式做了Logit变换 转换成了[0,1]之间的概率值
    
    有监督与无监督机器学习
    """针对每个模型 最好都记住一个该模型的实际案例"""
    
  • 决策树与随机森林

    树结构
    	是计算机底层较为常见的一种数据结构
        	二叉树、红黑树、B+...
    
    决策树
    	根节点与枝节点都是某个条件 只有叶子节点是最终的数据
     
    随机森林
    	其实就是由多颗决策树组织而成
    """针对面试不会的问题 一定要在面试之后记录下来并查找答案"""
    
  • K近邻模型

    以未知样本为中心 找寻周边K个邻居
    	通过该K个邻居推算出位置样本值
    
  • 模型评估策略

    1 T与F检验
    
    2 ROC曲线
    
    3 KS曲线
    
    4 混淆矩阵
    
  • 距离度量方式

    1 欧式距离
    
    2 曼哈顿距离
    
    3 余弦相似度
    """每天都应该模拟面试 思考如何将所学知识流畅完整的表达出来"""
    

今日内容概要

  • K近邻模型

    理论 实操很简单
    
  • 贝叶斯模型

    理论很复杂实操很简单
    
  • SVM模型

    理论 实操较为简单
    
  • K均值聚类模型

    理论 实操很简单
    

今日内容详细

K近邻模型

"""每个模型都应该表述出实际案例 以及较为详细的操作过程"""
标准化处理(讲过)
	eg:我们在做表合并的时候 可能会出现不同的单位使用不同的度量方式
        	公司A使用cm作为度量方式
            公司B使用m作为度量方式
    标准化处理很大一部分指的就是统一量纲
 
"""最好还可以自己总结一下每个模型擅长的领域及问题"""

########实操代码###########
# 导入第三方包
import pandas as pd
# 导入数据
Knowledge = pd.read_excel(r'Knowledge.xlsx')
# 返回前5行数据
Knowledge.head()

# 构造训练集和测试集
# 导入第三方模块
from sklearn import model_selection
# 将数据集拆分为训练集和测试集
predictors = Knowledge.columns[:-1]
predictors
X_train, X_test, y_train, y_test = model_selection.train_test_split(Knowledge[predictors], Knowledge.UNS, 
                                                                    test_size = 0.25, random_state = 1234)

# 导入第三方模块
import numpy as np
from sklearn import neighbors
import matplotlib.pyplot as plt

# 设置待测试的不同k值
K = np.arange(1,np.ceil(np.log2(Knowledge.shape[0]))).astype(int)
# 构建空的列表,用于存储平均准确率
accuracy = []
for k in K:
    # 使用10重交叉验证的方法,比对每一个k值下KNN模型的预测准确率
    cv_result = model_selection.cross_val_score(neighbors.KNeighborsClassifier(n_neighbors = k, weights = 'distance'), 
                                                X_train, y_train, cv = 10, scoring='accuracy')
    accuracy.append(cv_result.mean())

# 从k个平均准确率中挑选出最大值所对应的下标    
arg_max = np.array(accuracy).argmax()
# 中文和负号的正常显示
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
# 绘制不同K值与平均预测准确率之间的折线图
plt.plot(K, accuracy)
# 添加点图
plt.scatter(K, accuracy)
# 添加文字说明
plt.text(K[arg_max], accuracy[arg_max], '最佳k值为%s' %int(K[arg_max]))
# 显示图形
plt.show()

# 导入第三方模块
from sklearn import metrics

# 重新构建模型,并将最佳的近邻个数设置为6
knn_class = neighbors.KNeighborsClassifier(n_neighbors = 6, weights = 'distance')
# 模型拟合
knn_class.fit(X_train, y_train)
# 模型在测试数据集上的预测
predict = knn_class.predict(X_test)
# 构建混淆矩阵
cm = pd.crosstab(predict,y_test)
cm

# 导入第三方模块
import seaborn as sns

# 将混淆矩阵构造成数据框,并加上字段名和行名称,用于行或列的含义说明
cm = pd.DataFrame(cm)
# 绘制热力图
sns.heatmap(cm, annot = True,cmap = 'GnBu')
# 添加x轴和y轴的标签
plt.xlabel(' Real Lable')
plt.ylabel(' Predict Lable')
# 图形显示
plt.show()

# 模型整体的预测准确率
metrics.scorer.accuracy_score(y_test, predict)

# 分类模型的评估报告
print(metrics.classification_report(y_test, predict))

# 读入数据
ccpp = pd.read_excel(r'CCPP.xlsx')
ccpp.head()

# 返回数据集的行数与列数
ccpp.shape

#################################################################
# 导入第三方包
from sklearn.preprocessing import minmax_scale
# 对所有自变量数据作标准化处理(统一量纲)
predictors = ccpp.columns[:-1]
X = minmax_scale(ccpp[predictors])
#################################################################

# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, ccpp.PE, 
                                                                    test_size = 0.25, random_state = 1234)

# 设置待测试的不同k值
K = np.arange(1,np.ceil(np.log2(ccpp.shape[0]))).astype(int)
# 构建空的列表,用于存储平均MSE
mse = []
for k in K:
    # 使用10重交叉验证的方法,比对每一个k值下KNN模型的计算MSE
    cv_result = model_selection.cross_val_score(neighbors.KNeighborsRegressor(n_neighbors = k, weights = 'distance'), 
                                                X_train, y_train, cv = 10, scoring='neg_mean_squared_error')
    mse.append((-1*cv_result).mean())

# 从k个平均MSE中挑选出最小值所对应的下标  
arg_min = np.array(mse).argmin()
# 绘制不同K值与平均MSE之间的折线图
plt.plot(K, mse)
# 添加点图
plt.scatter(K, mse)
# 添加文字说明
plt.text(K[arg_min], mse[arg_min] + 0.5, '最佳k值为%s' %int(K[arg_min]))
# 显示图形
plt.show()


# 重新构建模型,并将最佳的近邻个数设置为7
knn_reg = neighbors.KNeighborsRegressor(n_neighbors = 7, weights = 'distance')
# 模型拟合
knn_reg.fit(X_train, y_train)
# 模型在测试集上的预测
predict = knn_reg.predict(X_test)
# 计算MSE值
metrics.mean_squared_error(y_test, predict)

# 对比真实值和实际值
pd.DataFrame({'Real':y_test,'Predict':predict}, columns=['Real','Predict']).head(10)

# 导入第三方模块
from sklearn import tree

# 预设各参数的不同选项值
max_depth = [19,21,23,25,27]
min_samples_split = [2,4,6,8]
min_samples_leaf = [2,4,8,10,12]
parameters = {'max_depth':max_depth, 'min_samples_split':min_samples_split, 'min_samples_leaf':min_samples_leaf}
# 网格搜索法,测试不同的参数值
grid_dtreg = model_selection.GridSearchCV(estimator = tree.DecisionTreeRegressor(), param_grid = parameters, cv=10)
# 模型拟合
grid_dtreg.fit(X_train, y_train)
# 返回最佳组合的参数值
grid_dtreg.best_params_

# 构建用于回归的决策树
CART_Reg = tree.DecisionTreeRegressor(max_depth = 25, min_samples_leaf = 10, min_samples_split = 4)
# 回归树拟合
CART_Reg.fit(X_train, y_train)
# 模型在测试集上的预测
pred = CART_Reg.predict(X_test)
# 计算衡量模型好坏的MSE值
metrics.mean_squared_error(y_test, pred)

贝叶斯模型

即通过已知类别的训练数据集,计算样本的先验概率,然后利⽤⻉叶斯概率公式测算未知类别样本属于某个类别的后验概率,最终以最⼤后验概率所对应的类别作为样本的预测值

# 1.高斯贝叶斯分类器
	自变量X均为连续性的数值类型
    ps:公式是三个分类器中最为复杂的
        eg:是否放贷
    
# 2.多项式贝叶斯分类器
	自变量X均为离散型的字符类型
    ps:公式中有一个平滑系数α(一般情况下取1 对概率值做拉普拉斯平滑)
		eg:是否相亲
            
# 3.伯努利贝叶斯分类器
	自变量X均为01的二元值
    ps:公式与多项式一致
        eg:情绪如何
         
"""所有算法模型的代码如果你真的认真看了 其实可以发现很多规律和相似之处"""


NLP自然语言处理
	包含的技术很多 比如将语音转文字 文字转语音
    将一大段话根据设定的词拆分成多个词语
    在python中分词常用的模块是jieba
    
#################代码实战###################
# 导入第三方包
import pandas as pd
# 读入数据
skin = pd.read_excel(r'Skin_Segment.xlsx')
skin
# 设置正例和负例
skin.y = skin.y.map({2:0,1:1})  # 设置一个映射关系,将2映射成0
skin.y.value_counts()

# 导入第三方模块
from sklearn import model_selection
# 样本拆分
X_train,X_test,y_train,y_test = model_selection.train_test_split(skin.iloc[:,:3], skin.y, 
                                                                 test_size = 0.25, random_state=1234)

# 导入第三方模块
from sklearn import naive_bayes
# 调用高斯朴素贝叶斯分类器的“类”
gnb = naive_bayes.GaussianNB()
# 模型拟合
gnb.fit(X_train, y_train)
# 模型在测试数据集上的预测
gnb_pred = gnb.predict(X_test)
# 各类别的预测数量
pd.Series(gnb_pred).value_counts()

# 导入第三方包
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
# 构建混淆矩阵
cm = pd.crosstab(gnb_pred,y_test)
# 绘制混淆矩阵图
sns.heatmap(cm, annot = True, cmap = 'GnBu', fmt = 'd')
# 去除x轴和y轴标签
plt.xlabel('Real')
plt.ylabel('Predict')
# 显示图形
plt.show()

print('模型的准确率为:\n',metrics.accuracy_score(y_test, gnb_pred))
print('模型的评估报告:\n',metrics.classification_report(y_test, gnb_pred))


# 计算正例的预测概率,用于生成ROC曲线的数据
y_score = gnb.predict_proba(X_test)[:,1]
fpr,tpr,threshold = metrics.roc_curve(y_test, y_score)
# 计算AUC的值
roc_auc = metrics.auc(fpr,tpr)

# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加边际线
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 添加文本信息
plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)
# 添加x轴与y轴标签
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
# 显示图形
plt.show()


# 导入第三方包
import pandas as pd
# 读取数据
mushrooms = pd.read_csv(r'mushrooms.csv')
# 数据的前5行
mushrooms.head()

##################################################################
# 将字符型数据作因子化处理,将其转换为整数型数据
columns = mushrooms.columns[1:]
for column in columns:
    mushrooms[column] = pd.factorize(mushrooms[column])[0]
mushrooms.head()
##################################################################

from sklearn import model_selection
# 将数据集拆分为训练集合测试集
Predictors = mushrooms.columns[1:]
X_train,X_test,y_train,y_test = model_selection.train_test_split(mushrooms[Predictors], mushrooms['type'], 
                                                                 test_size = 0.25, random_state = 10)

from sklearn import naive_bayes
from sklearn import metrics
import seaborn as sns
import matplotlib.pyplot as plt
# 构建多项式贝叶斯分类器的“类”
mnb = naive_bayes.MultinomialNB()
# 基于训练数据集的拟合
mnb.fit(X_train, y_train)
# 基于测试数据集的预测
mnb_pred = mnb.predict(X_test)
# 构建混淆矩阵
cm = pd.crosstab(mnb_pred,y_test)
# 绘制混淆矩阵图
sns.heatmap(cm, annot = True, cmap = 'GnBu', fmt = 'd')
# 去除x轴和y轴标签
plt.xlabel('Real')
plt.ylabel('Predict')
# 显示图形
plt.show()

# 模型的预测准确率
print('模型的准确率为:\n',metrics.accuracy_score(y_test, mnb_pred))
print('模型的评估报告:\n',metrics.classification_report(y_test, mnb_pred))

from sklearn import metrics
# 计算正例的预测概率,用于生成ROC曲线的数据
y_score = mnb.predict_proba(X_test)[:,1]
fpr,tpr,threshold = metrics.roc_curve(y_test.map({'edible':0,'poisonous':1}), y_score)


# 计算AUC的值
roc_auc = metrics.auc(fpr,tpr)

# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加边际线
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 添加文本信息
plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)
# 添加x轴与y轴标签
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
# 显示图形
plt.show()


import pandas as pd
# 读入评论数据
evaluation = pd.read_excel(r'Contents.xlsx',sheet_name=0)
# 查看数据前10行
evaluation.head(10)


# 运用正则表达式,将评论中的数字和英文去除
evaluation.Content = evaluation.Content.str.replace('[0-9a-zA-Z]','')
evaluation.head()


# !pip3 install jieba
# !pip install jieba
# 导入第三方包
import jieba

# 加载自定义词库
jieba.load_userdict(r'all_words.txt')

# 读入停止词
with open(r'mystopwords.txt', encoding='UTF-8') as words:
    stop_words = [i.strip() for i in words.readlines()]

# 构造切词的自定义函数,并在切词过程中删除停止词
def cut_word(sentence):
    words = [i for i in jieba.lcut(sentence) if i not in stop_words]
    # 切完的词用空格隔开
    result = ' '.join(words)
    return(result)
# 对评论内容进行批量切词
words = evaluation.Content.apply(cut_word)
# 前5行内容的切词效果
words[:5]


# 导入第三方包
from sklearn.feature_extraction.text import CountVectorizer
# 计算每个词在各评论内容中的次数,并将稀疏度为99%以上的词删除
counts = CountVectorizer(min_df = 0.01)
# 文档词条矩阵
dtm_counts = counts.fit_transform(words).toarray()
# 矩阵的列名称
columns = counts.get_feature_names()
# 将矩阵转换为数据框--即X变量
X = pd.DataFrame(dtm_counts, columns=columns)
# 情感标签变量
y = evaluation.Type
X.head()


from sklearn import model_selection
from sklearn import naive_bayes
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
# 将数据集拆分为训练集和测试集
X_train,X_test,y_train,y_test = model_selection.train_test_split(X,y,test_size = 0.25, random_state=1)
# 构建伯努利贝叶斯分类器
bnb = naive_bayes.BernoulliNB()
# 模型在训练数据集上的拟合
bnb.fit(X_train,y_train)
# 模型在测试数据集上的预测
bnb_pred = bnb.predict(X_test)
# 构建混淆矩阵
cm = pd.crosstab(bnb_pred,y_test)
# 绘制混淆矩阵图
sns.heatmap(cm, annot = True, cmap = 'GnBu', fmt = 'd')
# 去除x轴和y轴标签
plt.xlabel('Real')
plt.ylabel('Predict')
# 显示图形
plt.show()

# 模型的预测准确率
print('模型的准确率为:\n',metrics.accuracy_score(y_test, bnb_pred))
print('模型的评估报告:\n',metrics.classification_report(y_test, bnb_pred))


# 计算正例Positive所对应的概率,用于生成ROC曲线的数据
y_score = bnb.predict_proba(X_test)[:,1]
fpr,tpr,threshold = metrics.roc_curve(y_test.map({'Negative':0,'Positive':1}), y_score)
# 计算AUC的值
roc_auc = metrics.auc(fpr,tpr)

# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加边际线
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 添加文本信息
plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)
# 添加x轴与y轴标签
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
# 显示图形
plt.show()



    

SVM模型

# 超平面
	一维坐标系 切割样本点至两段 只需要一个点
    二维坐标系 切割样本点至两段 只需要一条线
    二维坐标系 切割样本点至两段 就需要一个面
  
# 如何求解超平面
	随机确定一条超平面 计算两边距离该平面最近的点
    取最近距离构造分隔带
    重复上述操作会产生很多超平面和分隔带从中挑选出分隔带最宽的作为最优解
    
1 线性可分
	直接可以通过直线划分
2 非线性可分
	将二维坐标转换成三维坐标再使用超平面分割样本
  
核函数
	线性核函数
    多项式核函数
    高斯核函数(个人推荐使用)
    sigmoid核函数

K均值聚类模型

'''属于典型的无监督数据挖掘算法'''
K均值聚类利用距离远近的思想将目标数据分为指定的k个群体
进而是样本呈现群体内差异小 群体间差异大的特征


# K值的选择
	K意思是将样本点划分成几类
    1.拐点法
    	代码已经封装好了 后续直接调用即可
    2.轮廓系数法
    	代码已经封装好了 后续直接调用即可
        
###################代码实现#################
# 导入第三方包
import pandas as pd
import numpy as np  
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics

# 随机生成三组二元正态分布随机数 
np.random.seed(1234)
mean1 = [0.5, 0.5]
cov1 = [[0.3, 0], [0, 0.3]]
x1, y1 = np.random.multivariate_normal(mean1, cov1, 1000).T

mean2 = [0, 8]
cov2 = [[1.5, 0], [0, 1]]
x2, y2 = np.random.multivariate_normal(mean2, cov2, 1000).T

mean3 = [8, 4]
cov3 = [[1.5, 0], [0, 1]]
x3, y3 = np.random.multivariate_normal(mean3, cov3, 1000).T

# 绘制三组数据的散点图
plt.scatter(x1,y1)
plt.scatter(x2,y2)
plt.scatter(x3,y3)
# 显示图形
plt.show()

# 构造自定义函数,用于绘制不同k值和对应总的簇内离差平方和的折线图
def k_SSE(X, clusters):
    # 选择连续的K种不同的值
    K = range(1,clusters+1)
    # 构建空列表用于存储总的簇内离差平方和
    TSSE = []
    for k in K:
        # 用于存储各个簇内离差平方和
        SSE = []
        kmeans = KMeans(n_clusters=k)
        kmeans.fit(X)
        # 返回簇标签
        labels = kmeans.labels_
        # 返回簇中心
        centers = kmeans.cluster_centers_
        # 计算各簇样本的离差平方和,并保存到列表中
        for label in set(labels):
            SSE.append(np.sum((X.loc[labels == label,]-centers[label,:])**2))
        # 计算总的簇内离差平方和 
        TSSE.append(np.sum(SSE))

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')
    # 绘制K的个数与GSSE的关系
    plt.plot(K, TSSE, 'b*-')
    plt.xlabel('簇的个数')
    plt.ylabel('簇内离差平方和之和')
    # 显示图形
    plt.show()

# 将三组数据集汇总到数据框中
X = pd.DataFrame(np.concatenate([np.array([x1,y1]),np.array([x2,y2]),np.array([x3,y3])], axis = 1).T)
# 自定义函数的调用
k_SSE(X, 15)

# 构造自定义函数,用于绘制不同k值和对应轮廓系数的折线图
def k_silhouette(X, clusters):
    K = range(2,clusters+1)
    # 构建空列表,用于存储个中簇数下的轮廓系数
    S = []
    for k in K:
        kmeans = KMeans(n_clusters=k)
        kmeans.fit(X)
        labels = kmeans.labels_
        # 调用字模块metrics中的silhouette_score函数,计算轮廓系数
        S.append(metrics.silhouette_score(X, labels, metric='euclidean'))

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')    
    # 绘制K的个数与轮廓系数的关系
    plt.plot(K, S, 'b*-')
    plt.xlabel('簇的个数')
    plt.ylabel('轮廓系数')
    # 显示图形
    plt.show()
    
# 自定义函数的调用
k_silhouette(X, 15)


# 读取iris数据集
iris = pd.read_csv(r'iris.csv')
# 查看数据集的前几行
iris.head()

# 提取出用于建模的数据集X
X = iris.drop(labels = 'Species', axis = 1)
# 构建Kmeans模型
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
# 聚类结果标签
X['cluster'] = kmeans.labels_
# 各类频数统计
X.cluster.value_counts()

# 导入第三方模块
import seaborn as sns

# 三个簇的簇中心
centers = kmeans.cluster_centers_
# 绘制聚类效果的散点图
sns.lmplot(x = 'Petal_Length', y = 'Petal_Width', hue = 'cluster', markers = ['^','s','o'], 
           data = X, fit_reg = False, scatter_kws = {'alpha':0.8}, legend_out = False)
plt.scatter(centers[:,2], centers[:,3], marker = '*', color = 'black', s = 130)
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
# 图形显示
plt.show()

# 增加一个辅助列,将不同的花种映射到0,1,2三种值,目的方便后面图形的对比
iris['Species_map'] = iris.Species.map({'virginica':0,'setosa':1,'versicolor':2})
# 绘制原始数据三个类别的散点图
sns.lmplot(x = 'Petal_Length', y = 'Petal_Width', hue = 'Species_map', data = iris, markers = ['^','s','o'],
           fit_reg = False, scatter_kws = {'alpha':0.8}, legend_out = False)
plt.xlabel('花瓣长度')
plt.ylabel('花瓣宽度')
# 图形显示
plt.show()

# 读取球员数据
players = pd.read_csv(r'players.csv')
players.head()

# 绘制得分与命中率的散点图
sns.lmplot(x = '得分', y = '命中率', data = players, 
           fit_reg = False, scatter_kws = {'alpha':0.8, 'color': 'steelblue'})
plt.show()

from sklearn import preprocessing
# 数据标准化处理
X = preprocessing.minmax_scale(players[['得分','罚球命中率','命中率','三分命中率']])
# 将数组转换为数据框
X = pd.DataFrame(X, columns=['得分','罚球命中率','命中率','三分命中率'])
# 使用拐点法选择最佳的K值
k_SSE(X, 15)

# 使用轮廓系数选择最佳的K值
k_silhouette(X, 10)

# 将球员数据集聚为3类
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
# 将聚类结果标签插入到数据集players中
players['cluster'] = kmeans.labels_
# 构建空列表,用于存储三个簇的簇中心
centers = []
for i in players.cluster.unique():
    centers.append(players.ix[players.cluster == i,['得分','罚球命中率','命中率','三分命中率']].mean())
# 将列表转换为数组,便于后面的索引取数
centers = np.array(centers)

# 绘制散点图
sns.lmplot(x = '得分', y = '命中率', hue = 'cluster', data = players, markers = ['^','s','o'],
           fit_reg = False, scatter_kws = {'alpha':0.8}, legend = False)
# 添加簇中心
plt.scatter(centers[:,0], centers[:,2], c='k', marker = '*', s = 180)
plt.xlabel('得分')
plt.ylabel('命中率')
# 图形显示
plt.show()
 

作业

1.用自己的话术表述所有的算法模型
	模拟面试官提问你 你应该如何作答(用文字写下来)
2.复习python、MySQL
	要求能够当场编写程序和SQL查询题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值