题目链接
问题描述
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n.
Example:
Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99])
Hint:
- A direct way is to use the backtracking approach.
- Backtracking should contains three states which are (the current number, number of steps to get that number and a bitmask which represent which number is marked as visited so far in the current number). Start with state (0,0,0) and count all valid number till we reach number of steps equals to 10n.
- This problem can also be solved using a dynamic programming approach and some knowledge of combinatorics.
- Let f(k) = count of numbers with unique digits with length equals k.
- f(1) = 10, ..., f(k) = 9 * 9 * 8 * ... (9 - k + 2) [The first factor is 9 because a number cannot start with 0].
解题思路
设f(n)表示n为数字中各位都不相同的个数,则有countNumbersWithUniqueDigits(n)=f(1)+f(2)+……+f(n)=f(n)+countNumbersWithUniqueDigits(n-1);
对于f(n),由于首位不能为0,之后n--1位可以选不重复的任意数字,所以这是一个高中常见的概率题,可能性为9*9*8*……*(9 - n + 2)
代码如下:
class Solution {
public:
int countNumbersWithUniqueDigits(int n) {
if (n == 0) return 1;
if (n == 1) return 10;
vector<int> num(n + 1, 0);
vector<int> dp(n + 1, 0);
num[0] = 0, num[1] = 10;
dp[0] = 1, dp[1] = 10;
for (int i = 2; i <= n; i++) {
num[i] = 9;
for (int j = 1; j < i; j++) {
num[i] *= (9 + 1 - j);
}
dp[i] = dp[i - 1] + num[i];
}
return dp[n];
}
};
本文介绍了一种算法问题,即计算非负整数n范围内所有包含唯一数字的数的数量,并提供了一个C++实现的解决方案。该问题可通过回溯法解决,但更高效的方法是采用动态规划结合组合数学的方法。
1663

被折叠的 条评论
为什么被折叠?



