MATLAB Floyd算法求最短路

在该算法中,我们用邻接矩阵的形式来存储该图。

因为在本次建模过程中,我们已经把数据输入到excel中,

而matlab是可以编程来读取excel和写入excel的。若你的图的

邻接矩阵在txt中,也可以直接将txt拖入excel中读取。


n表示维数

w表示该图邻接矩阵


clc
clear
n=32;
[w,txt,raw]=xlsread('E:\w.xls');
w(isnan(w))=0
%Floyd算法求每对顶点之间的最短距离
M=max(max(w))*n^2;%M为充分大的正实数
d=w+((w==0)-eye(n))*M;
path=zeros(n);
for k=1:n
  for i=1:n
    for j=1:n
      if d(i,j)>d(i,k)+d(k,j)
         d(i,j)=d(i,k)+d(k,j);
         path(i,j)=k;
      end
    end
  end
end
d
path
xlswrite('E:\Path.xlsx,',path,'sheet1','a1');
xlswrite('E:\FILE.xlsx',d,'sheet1','a1');
ans=1


Matlab中可以使用Dijkstra算法和Floyd算法最短路问题。 1. Dijkstra算法 Dijkstra算法是一种贪心算法,用于解带权有向图中单源最短路径问题。该算法基于贪心策略,每次选择当前路径最短的顶点作为下一个访问的顶点,直到找到目标顶点或者无法继续扩展路径。具体实现过程如下: - 初始化:将源点s到所有点的距离初始化为无穷大,将源点s到自身的距离初始化为0。 - 选取当前距离最小的点v,标记为已访问,并将v的所有邻居节点的距离更新为v到源点s的距离加上v到邻居节点的距离。 - 重复步骤2,直到所有节点都被访问或者无法扩展路径。 在Matlab中,可以使用graph对象表示带权有向图,使用shortestpath函数最短路径。例如: ```matlab % 创建有向图 s = [1 1 2 2 3 3 4 4 5 5 5 6]; t = [2 3 4 5 4 6 5 6 4 6 2 6]; weights = [1 4 2 7 3 8 1 2 4 5 6 1]; G = graph(s,t,weights); % 解节点1到节点6的最短路径 path = shortestpath(G,1,6); ``` 2. Floyd算法 Floyd算法是一种动态规划算法,用于解带权有向图中所有节点对之间的最短路径。算法的核心思想是通过中间节点k,更新从节点i到节点j的最短路径。具体实现过程如下: - 初始化:将所有节点对之间的距离初始化为无穷大,将自身到自身的距离初始化为0。 - 选取一个中间节点k,更新所有节点对之间的距离。对于每一对节点i和j,如果从i到k再到j的距离小于当前的距离,则更新距离。 - 重复步骤2,直到所有中间节点都被考虑过。 在Matlab中,可以使用graph对象表示带权有向图,使用shortestpath函数最短路径。例如: ```matlab % 创建有向图 s = [1 1 2 2 3 3 4 4 5 5 5 6]; t = [2 3 4 5 4 6 5 6 4 6 2 6]; weights = [1 4 2 7 3 8 1 2 4 5 6 1]; G = graph(s,t,weights); % 解所有节点对之间的最短路径 dist = distances(G); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值