技术的不断突破为我国各个产业带来的变革从未停歇,科技领域焕发出前所未有的生机,创新的河流奔腾不息。
AI大模型与AI产品的迭代速度超乎所有人的想象。在这一波热潮当中谁能够迅速切入关键点,谁将占领先机。除了Chat-GPT之外,国内文心一言和科大讯飞的“星火”认知大模型等已进入测试阶段,国产大模型如雨后春笋般涌现,那为什么Chat-GPT问世之前大模型并没有为我们广泛认知和应用呢?
首先从外部因素来讲,资金的限制是过去大语言模型发展的一个重要因素之一。训练大规模的神经网络模型需要大量的计算资源和较为先进的硬件设备,这对于一般的研究机构和中小型公司来说存在一定的困难,从而限制了大模型技术的发展。再者,对于大模型的开发没有成功的案例作为蓝本,更没有具体的投入产出比,即使是资金雄厚的公司机构也不敢孤注一掷、贸然前行。
Chat-GPT的出现使得大模型实现了从纸上谈兵到实践躬行的突破,在Chat-GPT之前,虽然已经有了大模型的概念,但是由于数据模型和计算资源的限制,人们无法想象到大模型能够实现具体的落地应用。
而Chat-GPT的成功表明,大模型技术可以实现从无到有,激发了更多的机构和公司的研发斗志和热情,众多资本纷纷投入到大模型研发的蓝海之中,形成“马太效应”,进一步促进了大模型的研发和优化升级,形成“百家争鸣、百花齐放”的科技发展新态势。
例如实在智能,作为国内通过自研AGl垂直大模型+超自动化技术,领跑人机协同时代的人工智能科技公司,近期发布了自研垂直领域大语言模型TARS(塔斯),可以通过快速学习垂直行业的大量数据,可具备思维链、情景学习等能力,生成具有语法和意义的自然语言,可与人类进行对话并执行指令;支持私有化部署和定制化训练,确保数据和信息安全,为客户提供"有效、安全、可信任、可落地”的“大模型+”行业解决方案;与实在RPA结合,支持以“所说即所得”方式自动生成数字员工;与实在Chatbot结合,支持人机协同对话功能;与实在IDP结合,支持“所说即所懂”的智能文档处理能力。
对于技术本身来讲,在之前的人工智能发展历程中,虽然也有一些语言模型研究,但是由于计算资源和数据量的限制,往往只能处理一些简单的语言任务,无法模拟人的思维,通常答非所问,甚至被不少人戏称为“人工智障”。算法改进、参数量增长以及预训练和微调技术的升级进化使得GPT通过使用大规模的语言数据集可以实现在自然语言处理领域的指令任务,如基本的文本生成、机器翻译以及问答操作等,其优秀的意图识别与自然语言理解能力,在大模型发展史上都是空前的。而文本又是人们日常工作学习中不可或缺的重要依托,Chat-GPT的低门槛性以及处理问题的高完成度是其成为人工智能明星产品的重要原因。
AIGC时代,大模型技术成为AI发展新范式,掌握了大模型技术也就把握住了人工智能领域发展的新机遇。在未来,国内大模型厂家只有持续优化改进以促进产品迭代更新,才能为数字经济发展实实在在赋能!