目前只写了AB两题,其他题目持续更新。
A. Make it Beautiful
大概题意为,给定一个数组,重新找到合适的排列顺序,使得
s
u
m
[
a
[
1
]
−
a
[
i
]
]
≠
a
[
i
+
1
]
sum [a[1] - a[i] ]≠a[i+1]
sum[a[1]−a[i]]=a[i+1]
我觉得这道题比较考查思维,我的思路如下:
- 是先找到NO的情况,即n个数均相等时
- 将数严格倒序输出,如果有重复的数,可以存在其他数组中,最后输出
代码如下:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int T;
int a[11000];
int q[10000];
int t[11000];
bool cmp(int x,int y){
return x>y;
}
int main(){
cin>>T;
while(T--){
int n;
memset(q,0,sizeof(q));
memset(t,0,sizeof(t));
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
t[a[i]]++;
}
if(n==2&&a[1]==a[2]||t[a[1]]==n){
cout<<"NO"<<endl;
continue;
}
else {
int cnt=0;
cout<<"YES"<<endl;
sort(a+1,a+n+1,cmp);
// for(int i=1;i<=n;i++)
// cout<<a[i]<<" ";
for(int i=1;i<=n;i++){
if(a[i]!=a[i-1])cout<<a[i]<<" ";
else q[++cnt]=a[i];
}
for(int i=1;i<=cnt;i++)
cout<<q[i]<<" ";
cout<<endl;
}
}
return 0;
}
可以用桶判断n个数是不是相等的。
B. Matrix of Differences
大概题意为,阶为n的方阵排列,找到所有相邻的两个数,求其差的绝对值,使得结果种类最多。
举个例子:
2
1 4
3 2
3
1 9 2
7 3 8
4 6 5
4
1 16 2 15
13 4 14 3
5 12 6 11
9 8 10 7
可以证明最多就是
n
2
−
1
n^2-1
n2−1种,就可以用上述方法排列。
代码如下:
#include<iostream>
#include<string.h>
using namespace std;
int T;
int mapp[100][100];
int main(){
cin>>T;
while(T--){
int n;
cin>>n;
int sum=n*n-1;
memset(mapp,0,sizeof(mapp));
mapp[1][1]=1;
int flag=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j&&i==1)continue;
if(j==1){
if(i%2==0){
mapp[i][n]=mapp[i-1][n]+sum*flag;
flag*=-1;
}
else{
mapp[i][1]=mapp[i-1][1]+sum*flag;
flag*=-1;
}
sum--;
continue;
}
if(i%2!=0){
if(j%2==0){
mapp[i][j]=mapp[i][j-1]+flag*sum;
flag*=-1;
}
else {
mapp[i][j]=mapp[i][j-1]+flag*sum;
flag*=-1;
}
}
else{
if(j%2==0){
mapp[i][n-j+1]=mapp[i][n-j+2]+flag*sum;
flag*=-1;
}
else {
mapp[i][n-j+1]=mapp[i][n-j+2]+flag*sum;
flag*=-1;
}
}
sum--;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cout<<mapp[i][j]<<" ";
}
cout<<endl;
}
}
return 0;
}
可以用 f l a g ∗ = − 1 flag*=-1 flag∗=−1的方式交替正负。