案例:
Spark SQL的load,save的案例实战 -->> GenericLoadSave
load和save操作:
对于Spark SQL的DataFrame来说,无论是从什么数据源创建出来的DataFrame,都有一些共同的load和save操作。load操作主要用于加载数据,创建出DataFrame;save操作,主要用于将DataFrame中的数据保存到文件中。
Java版本
DataFrame df = sqlContext.read().load("users.parquet");
df.select("name", "favorite_color").write().save("namesAndFavColors.parquet");
Scala版本
val df = sqlContext.read.load("users.parquet")
df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
手动指定数据源类型:(可以实现不同数据源之间的转化)
也可以手动指定用来操作的数据源类型。数据源通常需要使用其全限定名来指定,比如parquet是org.apache.spark.sql.parquet。但是

本文介绍了Spark SQL中的load和save操作,用于DataFrame的数据加载与保存。load方法用于从各种数据源创建DataFrame,而save方法则将DataFrame数据保存到文件。手动指定数据源类型可以实现不同格式间的数据转化,例如将json数据保存为parquet格式。同时,Spark SQL的save模式提供了处理已有数据的策略,包括覆盖、追加等,但需要注意save操作不具原子性,可能导致脏数据问题。
最低0.47元/天 解锁文章
246

被折叠的 条评论
为什么被折叠?



