Spark-SQL之JSON数据源

本文介绍了Spark SQL如何处理JSON数据源,强调了JSON文件的格式要求,即每行必须包含一个独立有效的JSON对象。通过SQLContext.read.json()方法,可以将JSON数据转化为DataFrame。并提供了Java和Scala版本的示例代码。
摘要由CSDN通过智能技术生成

JSON数据源

Spark SQL可以自动推断JSON文件的元数据,并且加载其数据,创建一个DataFrame。可以使用SQLContext.read.json ()方法,针对一个元素类型为String的RDD,或者是一个JSON文件。

 

但是要注意的是,这里使用的JSON文件与传统意义上的JSON文件是不一样的。每行都必须,也只能包含一个,单独的,自包含的,有效的JSON对象。不能让一个JSON对象分散在多行。否则会报错。

 

案例:

Java版本:

package Spark_SQL.Hive_sql;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;

import java.util.ArrayList;
import java.util.List;
import static org.apache.spark.sql.types.DataTypes.IntegerType;
import static org.apache.spark.sql.types.DataTypes.StringType;

/**
 * @Date: 2019/3/16 9:13
 * @Author Angle
 */

/*
* 利用json数据源执行sql
* 查询json文件中成绩大于80的学生的信息
*
* 1、读取json文件,查询成绩大于80学生姓名
* 2、针对json字符串创建DataFrame,查询出符合条件姓名的成绩
* 3、进行join连接,保存到文件
*
* */
publi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值