JSON数据源
Spark SQL可以自动推断JSON文件的元数据,并且加载其数据,创建一个DataFrame。可以使用SQLContext.read.json ()方法,针对一个元素类型为String的RDD,或者是一个JSON文件。
但是要注意的是,这里使用的JSON文件与传统意义上的JSON文件是不一样的。每行都必须,也只能包含一个,单独的,自包含的,有效的JSON对象。不能让一个JSON对象分散在多行。否则会报错。
案例:
Java版本:
package Spark_SQL.Hive_sql;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;
import java.util.ArrayList;
import java.util.List;
import static org.apache.spark.sql.types.DataTypes.IntegerType;
import static org.apache.spark.sql.types.DataTypes.StringType;
/**
* @Date: 2019/3/16 9:13
* @Author Angle
*/
/*
* 利用json数据源执行sql
* 查询json文件中成绩大于80的学生的信息
*
* 1、读取json文件,查询成绩大于80学生姓名
* 2、针对json字符串创建DataFrame,查询出符合条件姓名的成绩
* 3、进行join连接,保存到文件
*
* */
publi