自动化技术-图像识别

  1. 白屏检测:使用OpenCV来判断,首先通过pyautogui库获取屏幕截图,然后将其转成灰度图像,接着计算灰度图像的平均值,如果平均值大于阈值则为白屏
    import cv2
    import numpy as np
    import pyautogui
    
    # 获取屏幕截图
    screenshot = pyautogui.screenshot()
    screenshot = np.array(screenshot)
    screenshot = cv2.cvtColor(screenshot, cv2.COLOR_RGB2BGR)
    
    # 转换为灰度图像
    gray = cv2.cvtColor(screenshot, cv2.COLOR_BGR2GRAY)
    
    # 计算灰度图像的平均值
    average_color = np.mean(gray)
    
    # 设置白屏的阈值
    threshold = 200  # 这里可以根据实际情况调整
    
    # 判断屏幕是否为白屏
    if average_color > threshold:
        print("屏幕为白屏")
    else:
        print("屏幕不是白屏")
    
  2. 图像对比:使用OpenCV来进行对比,将两张图片都转成灰度图像,使用SIFT特征检测器来提取关键点和描述符,使用暴力匹配器BFMacher来匹配这些描述符,最后根据匹配的数量计算了图片的相似度
    import cv2
    
    # 加载两张图片
    image1 = cv2.imread('image1.jpg')
    image2 = cv2.imread('image2.jpg')
    
    # 将图片转换为灰度图像
    gray_image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
    gray_image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
    
    # 计算两张灰度图像的结构相似度指数(SSIM)
    sift = cv2.SIFT_create()
    keypoints_1, descriptors_1 = sift.detectAndCompute(gray_image1, None)
    keypoints_2, descriptors_2 = sift.detectAndCompute(gray_image2, None)
    
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(descriptors_1, descriptors_2, k=2)
    
    good_matches = []
    for m, n in matches:
        if m.distance < 0.75 * n.distance:
            good_matches.append([m])
    
    similarity = len(good_matches) / len(keypoints_1) * 100
    print("图片相似度: {:.2f}%".format(similarity))
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值