代码减半,5个绝佳的Python装饰器

本文介绍了能将代码减少一半的五个Python装饰器,使用这些装饰器,提升Python效率和可读性。

到目前为止,Python编程语言由于其语法简单,在机器学习和网络开发等各个领域的应用功能强大。

除非绝对必要,装饰器一般很少出现在视野中,比如使用@staticmethod装饰器来表示类中的静态方法。

装饰器能提供的大量强大的功能,同时它们可以提升代码的整洁度和可读性。

因此,在本文中将探讨Python包装器的概念,并介绍可以改善Python开发过程的五个示例。

Python包装器

Python包装器是添加到另一个函数中的函数,它可以在不直接更改源代码的情况下添加额外的功能或修改其行为。它们通常以装饰器的形式实现,装饰器是一种特殊的函数,它将另一个函数作为输入,并对其功能进行一些更改。

包装器函数在各种情况下都很有用:

  • 功能扩展:通过使用包装器封装函数,可以添加日志记录、性能测量或缓存等功能。

  • 代码重用性:可以将一个包装器函数甚至一个类应用于多个实体,这样就可以避免代码重复,并确保不同组件的行为保持一致。

  • 行为修改:可以拦截输入参数,例如,验证输入变量,而无需使用许多assert行。

示例

接下来举例说明包装器在日常工作中的重要性:

1 - 计时器

该包装器函数用于测量函数的执行时间,并打印已用时间。它对于剖析和优化代码非常有用。

import time      def timer(func):       def wrapper(*args, **kwargs):           # 启动计时器           start_time = time.time()           # 调用装饰函数           result = func(*args, **kwargs)           # 重新测量时间           end_time = time.time()           # 计算所耗时间并打印出来           execution_time = end_time - start_time           print(f"Execution time: {execution_time} seconds")           # 返回装饰函数的执行结果           return result       # 返回包装函数的引用       return wrapper   

要在Python中创建装饰器,需要定义一个名为timer的函数,它需要一个名为func的参数来表示它是一个装饰器函数。在timer函数中,本文定义了另一个名为wrapper的函数,它接收通常传递给要装饰的函数的参数。

wrapper函数中,使用提供的参数调用所需的函数。可以使用以下代码完成此操作:result = func(*args, **kwargs)

最后,wrapper函数返回装饰函数的执行结果。装饰器函数应返回对刚刚创建的包装函数的引用。

要使用装饰器,可以使用@符号将其应用于所需的函数。

`@timer   def train_model():       print("Starting the model training function...")       # 暂停程序5秒钟,模拟函数执行过程       time.sleep(5)        print("Model training completed!")      train_model()` 

输出:

Starting the model training function…

Model Training completed!

Execution time: 5.006425619125366 seconds

2 - 调试器

还可以创建一个有用的包装函数,通过打印每个函数的输入和输出来方便调试。通过这种方法,可以深入了解各种函数的执行流程,而不必在应用程序中使用大量打印语句。

def debug(func):       def wrapper(*args, **kwargs):           # 打印函数名和参数           print(f"Calling {func.__name__} with args: {args} kwargs: {kwargs}")           # 调用函数           result = func(*args, **kwargs)           # 打印结果           print(f"{func.__name__} returned: {result}")           return result       return wrapper   

可以使用__name__参数获取被调用函数的名称,然后使用argskwargsparameters打印传递给函数的内容。

@debug   def add_numbers(x, y):       return x + y   add_numbers(7, y=5,)  # 输出:Calling add_numbers with args: (7) kwargs: {'y': 5} \n add_numbers returned: 12   

3 - 异常处理器

异常处理器包装函数(exception_handler)将捕捉divide函数中出现的任何异常,并进行相应处理。

可以根据用户的要求定制封装函数中的异常处理方法,例如记录异常或执行额外的错误处理步骤。

def exception_handler(func):       def wrapper(*args, **kwargs):           try:               return func(*args, **kwargs)           except Exception as e:               # 处理异常               print(f"An exception occurred: {str(e)}")               # 可选择执行额外的错误处理或日志记录               # 必要时重设异常       return wrapper   

这对于简化代码,建立统一的异常处理和错误记录程序非常有用。

@exception_handler   def divide(x, y):       result = x / y       return result   divide(10, 0)  # 输出:An exception occurred: division by zero   

4 - 输入验证器

该封装函数根据指定条件或数据类型验证函数的输入参数。它可用于确保输入数据的正确性和一致性。

另一种方法是在验证输入数据的函数中创建无数的assert语句。

要在装饰器中添加验证功能,需要将装饰器函数包装在另一个函数中,该函数接受一个或多个验证函数作为参数。这些验证函数负责检查输入值是否符合某些标准或条件。

现在,validate_input函数本身就是一个装饰器。在wrapper函数中,输入和关键字参数将根据所提供的验证函数进行检查。如果有任何参数未通过验证,就会引发一个ValueError,并在提示信息中说明该参数无效。

def validate_input(*validations):       def decorator(func):           def wrapper(*args, **kwargs):               for i, val in enumerate(args):                   if i < len(validations):                       if not validations[i](val):                           raise ValueError(f"Invalid argument: {val}")               for key, val in kwargs.items():                   if key in validations[len(args):]:                       if not validations[len(args):][key](val):                           raise ValueError(f"Invalid argument: {key}={val}")               return func(*args, **kwargs)           return wrapper       return decorator   

要调用经过验证的输入,需要定义验证函数。例如,可以使用两个验证函数。第一个函数(lambda x: x > 0)检查参数x是否大于0,第二个函数(lambda y: isinstance(y,str))检查参数y是否为字符串类型。

重要的是要确保验证函数的顺序与它们要验证的参数的顺序一致。

@validate_input(lambda x: x > 0, lambda y: isinstance(y, str))   def divide_and_print(x, message):       print(message)       return 1 / x      divide_and_print(5, "Hello!")  # 输出:Hello! 1.0   

5 - 重试

该包装函数会重试执行指定次数的函数,重试之间会有延迟。在处理偶尔会因临时问题而失败的网络或API调用时,它非常有用。

为了实现这一点,可以为装饰器定义另一个封装函数,与之前的示例类似。不过,这一次不再将验证函数作为输入变量,而是传递特定参数,如max_attemps和变量delay

当调用装饰函数时,该wrapper函数将会被调用。它会记录尝试的次数(从0开始),并进入while循环。循环会尝试执行装饰函数,如果成功,会立即返回结果。但是,如果出现异常,则会递增尝试计数器,并打印错误信息,说明尝试次数和出现的具体异常。然后,它会使用time.sleep等待指定的延迟时间,然后再次尝试执行函数。

import time      def retry(max_attempts, delay=1):       def decorator(func):           def wrapper(*args, **kwargs):               attempts = 0               while attempts < max_attempts:                   try:                       return func(*args, **kwargs)                   except Exception as e:                       attempts += 1                       print(f"Attempt {attempts} failed: {e}")                       time.sleep(delay)               print(f"Function failed after {max_attempts} attempts")           return wrapper       return decorator   

为了调用函数,可以指定最大尝试次数和每次调用函数之间的持续时间(以秒为单位)。

@retry(max_attempts=3, delay=2)   def fetch_data(url):       print("Fetching the data..")       # 引发超时错误,模拟服务器不响应。       raise TimeoutError("Server is not responding.")   fetch_data("https://example.com/data")  # 重试3次,每次重试之间有2秒钟的延迟   

结论

Python包装器是可以提升Python编程体验的强大工具。通过使用包装器,可以简化复杂的任务,提高代码的可读性,并提高工作效率。

在本文中,探讨了Python包装器的五个示例:

  • 计时器包装器

  • 调试器包装器

  • 异常处理器包装器

  • 输入验证器包装器

  • 函数重试包装器

将这些包装器融入到项目中,将帮助编写出更简洁、更高效的Python代码,并将编程技巧提升到一个新的水平。

---------------------------END---------------------------

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img
三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述
在这里插入图片描述

简历模板在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值