本文介绍了能将代码减少一半的五个Python装饰器,使用这些装饰器,提升Python效率和可读性。
到目前为止,Python编程语言由于其语法简单,在机器学习和网络开发等各个领域的应用功能强大。
除非绝对必要,装饰器一般很少出现在视野中,比如使用@staticmethod
装饰器来表示类中的静态方法。
装饰器能提供的大量强大的功能,同时它们可以提升代码的整洁度和可读性。
因此,在本文中将探讨Python包装器的概念,并介绍可以改善Python开发过程的五个示例。
Python包装器
Python包装器是添加到另一个函数中的函数,它可以在不直接更改源代码的情况下添加额外的功能或修改其行为。它们通常以装饰器的形式实现,装饰器是一种特殊的函数,它将另一个函数作为输入,并对其功能进行一些更改。
包装器函数在各种情况下都很有用:
-
功能扩展:通过使用包装器封装函数,可以添加日志记录、性能测量或缓存等功能。
-
代码重用性:可以将一个包装器函数甚至一个类应用于多个实体,这样就可以避免代码重复,并确保不同组件的行为保持一致。
-
行为修改:可以拦截输入参数,例如,验证输入变量,而无需使用许多
assert
行。
示例
接下来举例说明包装器在日常工作中的重要性:
1 - 计时器
该包装器函数用于测量函数的执行时间,并打印已用时间。它对于剖析和优化代码非常有用。
import time def timer(func): def wrapper(*args, **kwargs): # 启动计时器 start_time = time.time() # 调用装饰函数 result = func(*args, **kwargs) # 重新测量时间 end_time = time.time() # 计算所耗时间并打印出来 execution_time = end_time - start_time print(f"Execution time: {execution_time} seconds") # 返回装饰函数的执行结果 return result # 返回包装函数的引用 return wrapper
要在Python中创建装饰器,需要定义一个名为timer
的函数,它需要一个名为func
的参数来表示它是一个装饰器函数。在timer
函数中,本文定义了另一个名为wrapper
的函数,它接收通常传递给要装饰的函数的参数。
在wrapper
函数中,使用提供的参数调用所需的函数。可以使用以下代码完成此操作:result = func(*args, **kwargs)
。
最后,wrapper
函数返回装饰函数的执行结果。装饰器函数应返回对刚刚创建的包装函数的引用。
要使用装饰器,可以使用@
符号将其应用于所需的函数。
`@timer def train_model(): print("Starting the model training function...") # 暂停程序5秒钟,模拟函数执行过程 time.sleep(5) print("Model training completed!") train_model()`
输出:
Starting the model training function…
Model Training completed!
Execution time: 5.006425619125366 seconds
2 - 调试器
还可以创建一个有用的包装函数,通过打印每个函数的输入和输出来方便调试。通过这种方法,可以深入了解各种函数的执行流程,而不必在应用程序中使用大量打印语句。
def debug(func): def wrapper(*args, **kwargs): # 打印函数名和参数 print(f"Calling {func.__name__} with args: {args} kwargs: {kwargs}") # 调用函数 result = func(*args, **kwargs) # 打印结果 print(f"{func.__name__} returned: {result}") return result return wrapper
可以使用__name__
参数获取被调用函数的名称,然后使用args
和kwargsparameters
打印传递给函数的内容。
@debug def add_numbers(x, y): return x + y add_numbers(7, y=5,) # 输出:Calling add_numbers with args: (7) kwargs: {'y': 5} \n add_numbers returned: 12
3 - 异常处理器
异常处理器包装函数(exception_handler
)将捕捉divide
函数中出现的任何异常,并进行相应处理。
可以根据用户的要求定制封装函数中的异常处理方法,例如记录异常或执行额外的错误处理步骤。
def exception_handler(func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: # 处理异常 print(f"An exception occurred: {str(e)}") # 可选择执行额外的错误处理或日志记录 # 必要时重设异常 return wrapper
这对于简化代码,建立统一的异常处理和错误记录程序非常有用。
@exception_handler def divide(x, y): result = x / y return result divide(10, 0) # 输出:An exception occurred: division by zero
4 - 输入验证器
该封装函数根据指定条件或数据类型验证函数的输入参数。它可用于确保输入数据的正确性和一致性。
另一种方法是在验证输入数据的函数中创建无数的
assert
语句。
要在装饰器中添加验证功能,需要将装饰器函数包装在另一个函数中,该函数接受一个或多个验证函数作为参数。这些验证函数负责检查输入值是否符合某些标准或条件。
现在,validate_input
函数本身就是一个装饰器。在wrapper
函数中,输入和关键字参数将根据所提供的验证函数进行检查。如果有任何参数未通过验证,就会引发一个ValueError
,并在提示信息中说明该参数无效。
def validate_input(*validations): def decorator(func): def wrapper(*args, **kwargs): for i, val in enumerate(args): if i < len(validations): if not validations[i](val): raise ValueError(f"Invalid argument: {val}") for key, val in kwargs.items(): if key in validations[len(args):]: if not validations[len(args):][key](val): raise ValueError(f"Invalid argument: {key}={val}") return func(*args, **kwargs) return wrapper return decorator
要调用经过验证的输入,需要定义验证函数。例如,可以使用两个验证函数。第一个函数(lambda x: x > 0
)检查参数x
是否大于0
,第二个函数(lambda y: isinstance(y,str)
)检查参数y
是否为字符串类型。
重要的是要确保验证函数的顺序与它们要验证的参数的顺序一致。
@validate_input(lambda x: x > 0, lambda y: isinstance(y, str)) def divide_and_print(x, message): print(message) return 1 / x divide_and_print(5, "Hello!") # 输出:Hello! 1.0
5 - 重试
该包装函数会重试执行指定次数的函数,重试之间会有延迟。在处理偶尔会因临时问题而失败的网络或API调用时,它非常有用。
为了实现这一点,可以为装饰器定义另一个封装函数,与之前的示例类似。不过,这一次不再将验证函数作为输入变量,而是传递特定参数,如max_attemps
和变量delay
。
当调用装饰函数时,该wrapper
函数将会被调用。它会记录尝试的次数(从0
开始),并进入while
循环。循环会尝试执行装饰函数,如果成功,会立即返回结果。但是,如果出现异常,则会递增尝试计数器,并打印错误信息,说明尝试次数和出现的具体异常。然后,它会使用time.sleep
等待指定的延迟时间,然后再次尝试执行函数。
import time def retry(max_attempts, delay=1): def decorator(func): def wrapper(*args, **kwargs): attempts = 0 while attempts < max_attempts: try: return func(*args, **kwargs) except Exception as e: attempts += 1 print(f"Attempt {attempts} failed: {e}") time.sleep(delay) print(f"Function failed after {max_attempts} attempts") return wrapper return decorator
为了调用函数,可以指定最大尝试次数和每次调用函数之间的持续时间(以秒为单位)。
@retry(max_attempts=3, delay=2) def fetch_data(url): print("Fetching the data..") # 引发超时错误,模拟服务器不响应。 raise TimeoutError("Server is not responding.") fetch_data("https://example.com/data") # 重试3次,每次重试之间有2秒钟的延迟
结论
Python包装器是可以提升Python编程体验的强大工具。通过使用包装器,可以简化复杂的任务,提高代码的可读性,并提高工作效率。
在本文中,探讨了Python包装器的五个示例:
-
计时器包装器
-
调试器包装器
-
异常处理器包装器
-
输入验证器包装器
-
函数重试包装器
将这些包装器融入到项目中,将帮助编写出更简洁、更高效的Python代码,并将编程技巧提升到一个新的水平。
感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。
👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
