微积分的计算也许平时用不到,会让人觉得有点高深。
但其实它在数学专业的人眼中,也不过是一种极其普通的计算,是一种和加减乘除差不多的级别的常用计算方式。
微积分和求极限运算本身不是很难,只是它们的计算规则不像加减乘除那么简单。
它们的计算过程中需要使用很多计算规则(这些不太容易记住),就像计算三角函数要记住很多三角函数的公式和定理一样。
使用 Sympy
可以有效减轻这方面的负担,让我们用编程的方式来解决微积分问题。
1. 极限计算
极限计算的应用场景很广,也是学习微积分的前置步骤。
1.1. 函数极限
比如这个简单的函数limx→∞1x\lim\limits_{x\rarr\infty}\frac{1}{x}x→∞limx1,
我们想知道它在x
趋于无穷大时的值,普通的加减乘除算法就无法运算。
用 Sympy
来计算:
from sympy import Symbol, Limit, S
Limit(1/x, x, S.Infinity).doit()
#运行结果
0
当 x 趋向于0时,
Limit(1/x, x, 0).doit()
#运行结果,下面的符号表示正无穷大
oo
1.2. 瞬时速度
在物理上,计算瞬时速度的时候,也会用极限的计算。
比如,存在一个路程和时间的公式:S=t2+2t+10S = t^2 + 2t + 10S=t2+2t+10 (S
表示路程,t
表示时间)
计算瞬时速度时,步骤如下:
- 假设初始路程 SSS
- 经过 Δt\Delta tΔt时间后,路程变为ΔS=(t+Δt)2+2(t+Δt)+10\Delta S = (t+\Delta t)^2 + 2(t+\Delta t) + 10ΔS=(t+Δt)2+2(t+Δt)+10
- 此时间间隔内的平均速度为:V=ΔS−SΔtV = \frac{\Delta S -