Python Sympy:计算微积分利器

本文介绍了如何使用Python的Sympy库进行微积分计算,包括极限、导数、偏导数、高阶导数和积分的计算。通过实例展示了Sympy在处理这些问题时的便捷性,强调了其在符号化表达式上的优势,适合于进行数学公式推导。
摘要由CSDN通过智能技术生成

微积分的计算也许平时用不到,会让人觉得有点高深。
但其实它在数学专业的人眼中,也不过是一种极其普通的计算,是一种和加减乘除差不多的级别的常用计算方式。

微积分和求极限运算本身不是很难,只是它们的计算规则不像加减乘除那么简单。
它们的计算过程中需要使用很多计算规则(这些不太容易记住),就像计算三角函数要记住很多三角函数的公式和定理一样。

使用 Sympy 可以有效减轻这方面的负担,让我们用编程的方式来解决微积分问题。
在这里插入图片描述

1. 极限计算

极限计算的应用场景很广,也是学习微积分的前置步骤。

1.1. 函数极限

比如这个简单的函数lim⁡x→∞1x\lim\limits_{x\rarr\infty}\frac{1}{x}x→∞lim​x1​,
我们想知道它在x趋于无穷大时的值,普通的加减乘除算法就无法运算。
Sympy 来计算:

from sympy import Symbol, Limit, S

Limit(1/x, x, S.Infinity).doit()
#运行结果
0

当 x 趋向于0时,

Limit(1/x, x, 0).doit()
#运行结果,下面的符号表示正无穷大
oo

1.2. 瞬时速度

在物理上,计算瞬时速度的时候,也会用极限的计算。

比如,存在一个路程和时间的公式:S=t2+2t+10S = t^2 + 2t + 10S=t2+2t+10 (S表示路程,t表示时间)
计算瞬时速度时,步骤如下:

  1. 假设初始路程 SSS
  2. 经过 Δt\Delta tΔt时间后,路程变为ΔS=(t+Δt)2+2(t+Δt)+10\Delta S = (t+\Delta t)^2 + 2(t+\Delta t) + 10ΔS=(t+Δt)2+2(t+Δt)+10
  3. 此时间间隔内的平均速度为:V=ΔS−SΔtV = \frac{\Delta S -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值