- 博客(21)
- 收藏
- 关注
原创 随机森林调参
max_score = np.where(ScoreAll == np.max(ScoreAll[:, 1]))[0][0] ##这句话看似很长的,其实就是找出最高得分对应的索引。#max_score = np.where(ScoreAll == np.max(ScoreAll[:, 1]))[0][0] ##这句话看似很长的,其实就是找出最高得分对应的索引。#print("最优参数以及最高得分:", ScoreAll[max_score])#print('熵得分: %.4f' % score)
2024-03-26 10:45:55 267
原创 KNN调参
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 测试集占比1/3。grid_search = GridSearchCV(knn_clf, param_grid, cv=5) # 网格搜索参数。grid_search.fit(X_train, y_train) # 网格搜索训练模型,比较耗时,约4分钟。'weights': ['uniform'], # 参数取值范围。
2024-03-25 21:25:26 474
原创 贪心 Huffuman树
int main()int n = 0;int i = 0;for (i = 0;i < n;i++)elseint j = 0;int b = 0;b > 0;b--)for (j = 0;j++)int k = 0;k < n;k++)tmp = a[k];a[j] = tmp;n--;return 0;
2024-03-20 18:57:34 246 1
原创 高精度整数
计算 c = a + b的时候,首先将 A[0]与 B[0]相加,如果有进位产生,则把进位(即和的十位数)存入 r,把和的个位数存入 C[0],即 C[1]应该是 A[1]、 B[1]和 r三个数的和.如果又有进位产生,则仍可将新的进位存入到 r中,和的个位存到 C[1]中。即 C[0]等于(A[0] + B[0]) % 10。然后计算 A[1]与 B[1]相加,这时还应将低位进上来的值 r也加起来,定义一个数组 A, A[0]用于存储 a的个位, A[1]用于存储 a的十位,依此类推。
2024-03-19 23:01:01 300
原创 蓝桥杯 阶乘
使用一个数组A来表示一个大整数a,A[0]表示a的个位,A[1]表示a的十位,依次类推。可能很大,而计算机能表示的整数范围有限,需要使用高精度计算的方法。将a乘以一个整数k变为将数组A的每一个元素都乘以k,请注意处理相应的进位。首先将a设为1,然后乘2,乘3,当乘到n时,即得到了n!样例输入10样例输出3628800。输入格式:输入包含一个正整数n,n <= 1000。问题描述:输入一个正整数n,输出n!
2024-03-19 15:39:57 359
原创 光谱数据处理 sg滤波+pca降维+随机森林
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed) # 测试集占比1/5。result3 = sqrt(metrics.mean_squared_error(y_test, y_predict)) # 通过模型预测的标签和真实标签计算均方根误差。print("用时:" + str((end_time - start_time).seconds) + 's' + str(
2024-03-06 18:16:50 466
原创 从0开始的深度学习(一)硬件
作为一个幻想学校给配显卡而入手了核显笔记本的小白,一台性能不错的独显台式就必不可缺了。选购的时候考虑了4060,据说跟30系列提升很小,秉承着买新不买旧的原则只能加一点目标4060ti。怕吕布骑狗也考虑了13490f但是贵小几百,性能提升据说也不大就搁置了。至于技嘉的问题我觉得无所谓吧,作为消费者商品还是得看使用价值。可以看到4450拿下12400f 小1k、技嘉4060ti小3k、技嘉主板小几百,还是挺有性价比的。其他的配件正如上面的显示器和键鼠一样都是丐中丐,稳定运行就行。
2024-02-16 00:31:01 220 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人