斐波那契公约数

问题描述

f数组为斐波那契数列,给出n,m,求  gcd(f[n],f[m])。

思路

这里用到了一个定理,gcd(f[n],f[m])=f[gcd(n,m)]。

证明如下:

设         n<m,f[n]=a,f[n+1]=b;

则有:      f[n+2]=a+b,f[n+3]=a+2b,f[n+4]=2a+3b......

由此可推出:f[m]=f[m-n-1]*a+f[m-n]*b,

即         f[m]=f[m-n-1]*f[n]+f[m-n]*f[n+1];

\therefore gcd(f[n],f[m])=gcd(f[n],f[m-n-1]*f[n]+f[m-n]*f[n+1])

\because f[n]|f[m-n-1]*f[n]

\therefore gcd(f[n],f[m])=gcd(f[n],f[m-n]*f[n+1])

引理:gcd(f[n],f[n+1])=1

证明:由欧几里得定理得:

                              gcd(f[n],f[n+1])=gcd(f[n],f[n+1]-f[n])=gcd(f[n],f[n-1])=...=gcd(f[1],f[2])=1;

\therefore gcd(f[n].f[m])=gcd(f[n],f[m-n])

即    gcd(f[n],f[m])=gcd(f[n],f[m\,mod\,n])

然后不断递归,我们发现,这个过程就是在求gcd(n,m);

\therefore gcd(f[n],f[m])=f[gcd(n,m)]

证毕。

代码。。并没有。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值