每天一道算法题(九)---- 变态跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

时间限制:1秒 空间限制:32768K 热度指数:350775

解题思路:这道题是上一道题目的变形,但是这次这只青蛙是蛙中之王,一次能跳x个台阶(x <= n)

思路一:上网搜了一下思路,和上一题的思想一样,也可以用逆推的思路去想,跳n级台阶,可以从n-1级跳上来,也可以从n-2级跳上来,从n-3级跳上来,依次下去,从第1级跳上去,或直接跳上去,所以,跳n级台阶的方法数相当于其它所有台阶数的方法的总和再加上从0级跳上去,表达式为 f(n) = f(n-1) + f(n-2) +...+ f(2) + f(1) + 1。我们列出一些式子看一看:

(1)f(n) =1;

  (2)  f(2)  = f(1) + 1;

  (3)  f(3)  = f(2) + f(1) + 1;

  (4)  f(4)  = f(3) + f(2) + f(1) + 1;

  (5)  f(n)  = f(n-1) + f(n-2) + f(n-3) ..... + 1;

然后得到式子: f(n) - f(n-1) = f(n-1)     ==>  f(n) = 2*f(n-1);

代码如下:

public class Solution {
    public int JumpFloorII(int target) {  
        if (target <= 0) {
            return 0;
        } else if (target == 1) {
            return 1;
        } else {
            return pow(2, target);
            return 2 * JumpFloorII(target - 1);
        }
    }
}

思路二:这个思路是我问一个大一的学妹这道题,她并非计算机专业,不懂得编程,但是她给的答案却令我惊讶。她思考了一会,说这不就是一个排列组合中的隔板法吗?我愣了一下,隔板法!不懂的朋友可以翻一翻高中的书,或者上网搜一搜隔板法的数学公式。即把n个台阶看做n个元素,每一次跳跃可以跳x(x <=n)个台阶,这就相当于使用k(k∈[0,n-1] )个隔板将台阶分为一拨一拨,此时总的隔板插法就等于青蛙跳法的总和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值