题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
时间限制:1秒 空间限制:32768K 热度指数:350775
解题思路:这道题是上一道题目的变形,但是这次这只青蛙是蛙中之王,一次能跳x个台阶(x <= n)
思路一:上网搜了一下思路,和上一题的思想一样,也可以用逆推的思路去想,跳n级台阶,可以从n-1级跳上来,也可以从n-2级跳上来,从n-3级跳上来,依次下去,从第1级跳上去,或直接跳上去,所以,跳n级台阶的方法数相当于其它所有台阶数的方法的总和再加上从0级跳上去,表达式为 f(n) = f(n-1) + f(n-2) +...+ f(2) + f(1) + 1。我们列出一些式子看一看:
(1)f(n) =1;
(2) f(2) = f(1) + 1;
(3) f(3) = f(2) + f(1) + 1;
(4) f(4) = f(3) + f(2) + f(1) + 1;
(5) f(n) = f(n-1) + f(n-2) + f(n-3) ..... + 1;
然后得到式子: f(n) - f(n-1) = f(n-1) ==> f(n) = 2*f(n-1);
代码如下:
public class Solution {
public int JumpFloorII(int target) {
if (target <= 0) {
return 0;
} else if (target == 1) {
return 1;
} else {
return pow(2, target);
return 2 * JumpFloorII(target - 1);
}
}
}
思路二:这个思路是我问一个大一的学妹这道题,她并非计算机专业,不懂得编程,但是她给的答案却令我惊讶。她思考了一会,说这不就是一个排列组合中的隔板法吗?我愣了一下,隔板法!不懂的朋友可以翻一翻高中的书,或者上网搜一搜隔板法的数学公式。即把n个台阶看做n个元素,每一次跳跃可以跳x(x <=n)个台阶,这就相当于使用k(k∈[0,n-1] )个隔板将台阶分为一拨一拨,此时总的隔板插法就等于青蛙跳法的总和。