给定k 个排好序的序列, 用 2 路合并算法将这k 个序列合并成一个序列。 假设所采用的 2 路合并算法合并 2 个长度分别为m和n的序列需要m+n-1 次比较。试设 计一个算法确定合并这个序列的最优合并顺序,使所需的总比较次数最少。 为了进行比较,还需要确定合并这个序列的最差合并顺序,使所需的总比较次数最多。
输入格式:
第一行有 1 个正整数k,表示有 k个待合并序列。 第二行有 k个正整数,表示 k个待合并序列的长度。
输出格式:
输出最多比较次数和最少比较次数。
输入样例:
在这里给出一组输入。例如:
4
5 12 11 2
输出样例:
在这里给出相应的输出。例如:
78 52
代码实现:
#include <bits/stdc++.h>
using namespace std;
#define Up(i,a,b) for(int i = a; i <= b; i++)
int main()
{
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int k; //k个待合并序列
cin >> k;
vector<int> v;
Up(i,1,k)
{
int _;
cin >> _;
v.push_back(_);
}
sort(v.begin(),v.end()); //升序排列
int maxans = 0,minans = 0; //最多比较次数maxans,最少比较次数minans
vector<int> v1 = v; //copy一份vector的数据,v1求最大比较次数,v求最小比较次数
sort(v1.begin(),v1.end(),greater<int>()); //降序排列
while(v.size() != 1) //直到vector中只有一个元素为止
{
//求最少比较次数
int m = v[0], n = v[1];
minans += m+n-1;
vector<int>::iterator it = find(v.begin(),v.end(),m);
v.erase(it,it+2); //合并俩个数
v.push_back(m+n);
sort(v.begin(),v.end());
//求最多比较次数
m = v1[0], n = v1[1];
maxans += m+n-1;
it = find(v1.begin(),v1.end(),m);
v1.erase(it,it+2);
v1.push_back(m+n);
sort(v1.begin(),v1.end(),greater<int>());
}
cout << maxans << " " << minans << endl;
return 0;
}